Abstract:Recently, neural tangent kernel (NTK) has been used to explain the dynamics of learning parameters of neural networks, at the large width limit. Quantitative analyses of NTK give rise to network widths that are often impractical and incur high costs in time and energy in both training and deployment. Using a matrix factorization technique, we show how to obtain similar guarantees to those obtained by a prior analysis while reducing training and inference resource costs. The importance of our result further increases when the input points' data dimension is in the same order as the number of input points. More generally, our work suggests how to analyze large width networks in which dense linear layers are replaced with a low complexity factorization, thus reducing the heavy dependence on the large width.
Abstract:Fast Fourier transform, Wavelets, and other well-known transforms in signal processing have a structured representation as a product of sparse matrices which are referred to as butterfly structures. Research in the recent past have used such structured linear networks along with randomness as pre-conditioners to improve the computational performance of large scale linear algebraic operations. With the advent of deep learning and AI and the computational efficiency of such structured matrices, it is natural to study sparse linear deep networks in which the location of the non-zero weights are predetermined by the butterfly structure. This work studies, both theoretically and empirically, the feasibility of training such networks in different scenarios. Unlike convolutional neural networks, which are structured sparse networks designed to recognize local patterns in lattices representing a spatial or a temporal structure, the butterfly architecture used in this work can replace any dense linear operator with a gadget consisting of a sequence of logarithmically (in the network width) many sparse layers, containing a total of near linear number of weights. This improves on the quadratic number of weights required in a standard dense layer, with little compromise in expressibility of the resulting operator. We show in a collection of empirical experiments that our proposed architecture not only produces results that match and often outperform existing known architectures, but it also offers faster training and prediction in deployment. This empirical phenomenon is observed in a wide variety of experiments that we report, including both supervised prediction on NLP and vision data, as well as in unsupervised representation learning using autoencoders. Preliminary theoretical results presented in the paper explain why training speed and outcome are not compromised by our proposed approach.
Abstract:Convolutional networks have marked their place over the last few years as the best performing model for various visual tasks. They are, however, most suited for supervised learning from large amounts of labeled data. Previous attempts have been made to use unlabeled data to improve model performance by applying unsupervised techniques. These attempts require different architectures and training methods. In this work we present a novel approach for unsupervised training of Convolutional networks that is based on contrasting between spatial regions within images. This criterion can be employed within conventional neural networks and trained using standard techniques such as SGD and back-propagation, thus complementing supervised methods.
Abstract:Deep networks are successfully used as classification models yielding state-of-the-art results when trained on a large number of labeled samples. These models, however, are usually much less suited for semi-supervised problems because of their tendency to overfit easily when trained on small amounts of data. In this work we will explore a new training objective that is targeting a semi-supervised regime with only a small subset of labeled data. This criterion is based on a deep metric embedding over distance relations within the set of labeled samples, together with constraints over the embeddings of the unlabeled set. The final learned representations are discriminative in euclidean space, and hence can be used with subsequent nearest-neighbor classification using the labeled samples.
Abstract:Convolutional networks have marked their place over the last few years as the best performing model for various visual tasks. They are, however, most suited for supervised learning from large amounts of labeled data. Previous attempts have been made to use unlabeled data to improve model performance by applying unsupervised techniques. These attempts require different architectures and training methods. In this work we present a novel approach for unsupervised training of Convolutional networks that is based on contrasting between spatial regions within images. This criterion can be employed within conventional neural networks and trained using standard techniques such as SGD and back-propagation, thus complementing supervised methods.
Abstract:Deep learning has proven itself as a successful set of models for learning useful semantic representations of data. These, however, are mostly implicitly learned as part of a classification task. In this paper we propose the triplet network model, which aims to learn useful representations by distance comparisons. A similar model was defined by Wang et al. (2014), tailor made for learning a ranking for image information retrieval. Here we demonstrate using various datasets that our model learns a better representation than that of its immediate competitor, the Siamese network. We also discuss future possible usage as a framework for unsupervised learning.
Abstract:The permutahedron is the convex polytope with vertex set consisting of the vectors $(\pi(1),\dots, \pi(n))$ for all permutations (bijections) $\pi$ over $\{1,\dots, n\}$. We study a bandit game in which, at each step $t$, an adversary chooses a hidden weight weight vector $s_t$, a player chooses a vertex $\pi_t$ of the permutahedron and suffers an observed loss of $\sum_{i=1}^n \pi(i) s_t(i)$. A previous algorithm CombBand of Cesa-Bianchi et al (2009) guarantees a regret of $O(n\sqrt{T \log n})$ for a time horizon of $T$. Unfortunately, CombBand requires at each step an $n$-by-$n$ matrix permanent approximation to within improved accuracy as $T$ grows, resulting in a total running time that is super linear in $T$, making it impractical for large time horizons. We provide an algorithm of regret $O(n^{3/2}\sqrt{T})$ with total time complexity $O(n^3T)$. The ideas are a combination of CombBand and a recent algorithm by Ailon (2013) for online optimization over the permutahedron in the full information setting. The technical core is a bound on the variance of the Plackett-Luce noisy sorting process's "pseudo loss". The bound is obtained by establishing positive semi-definiteness of a family of 3-by-3 matrices generated from rational functions of exponentials of 3 parameters.
Abstract:We present algorithms for reducing the Dueling Bandits problem to the conventional (stochastic) Multi-Armed Bandits problem. The Dueling Bandits problem is an online model of learning with ordinal feedback of the form "A is preferred to B" (as opposed to cardinal feedback like "A has value 2.5"), giving it wide applicability in learning from implicit user feedback and revealed and stated preferences. In contrast to existing algorithms for the Dueling Bandits problem, our reductions -- named $\Doubler$, $\MultiSbm$ and $\DoubleSbm$ -- provide a generic schema for translating the extensive body of known results about conventional Multi-Armed Bandit algorithms to the Dueling Bandits setting. For $\Doubler$ and $\MultiSbm$ we prove regret upper bounds in both finite and infinite settings, and conjecture about the performance of $\DoubleSbm$ which empirically outperforms the other two as well as previous algorithms in our experiments. In addition, we provide the first almost optimal regret bound in terms of second order terms, such as the differences between the values of the arms.
Abstract:Given a set $V$ of $n$ objects, an online ranking system outputs at each time step a full ranking of the set, observes a feedback of some form and suffers a loss. We study the setting in which the (adversarial) feedback is an element in $V$, and the loss is the position (0th, 1st, 2nd...) of the item in the outputted ranking. More generally, we study a setting in which the feedback is a subset $U$ of at most $k$ elements in $V$, and the loss is the sum of the positions of those elements. We present an algorithm of expected regret $O(n^{3/2}\sqrt{Tk})$ over a time horizon of $T$ steps with respect to the best single ranking in hindsight. This improves previous algorithms and analyses either by a factor of either $\Omega(\sqrt{k})$, a factor of $\Omega(\sqrt{\log n})$ or by improving running time from quadratic to $O(n\log n)$ per round. We also prove a matching lower bound. Our techniques also imply an improved regret bound for online rank aggregation over the Spearman correlation measure, and to other more complex ranking loss functions.
Abstract:This paper investigates graph clustering in the planted cluster model in the presence of {\em small clusters}. Traditional results dictate that for an algorithm to provably correctly recover the clusters, {\em all} clusters must be sufficiently large (in particular, $\tilde{\Omega}(\sqrt{n})$ where $n$ is the number of nodes of the graph). We show that this is not really a restriction: by a more refined analysis of the trace-norm based recovery approach proposed in Jalali et al. (2011) and Chen et al. (2012), we prove that small clusters, under certain mild assumptions, do not hinder recovery of large ones. Based on this result, we further devise an iterative algorithm to recover {\em almost all clusters} via a "peeling strategy", i.e., recover large clusters first, leading to a reduced problem, and repeat this procedure. These results are extended to the {\em partial observation} setting, in which only a (chosen) part of the graph is observed.The peeling strategy gives rise to an active learning algorithm, in which edges adjacent to smaller clusters are queried more often as large clusters are learned (and removed). From a high level, this paper sheds novel insights on high-dimensional statistics and learning structured data, by presenting a structured matrix learning problem for which a one shot convex relaxation approach necessarily fails, but a carefully constructed sequence of convex relaxationsdoes the job.