Abstract:In many Vietnamese schools, grades are still being inputted into the database manually, which is not only inefficient but also prone to human error. Thus, the automation of this process is highly necessary, which can only be achieved if we can extract information from academic transcripts. In this paper, we test our improved CRNN model in extracting information from 126 transcripts, with 1008 vertical lines, 3859 horizontal lines, and 2139 handwritten test scores. Then, this model is compared to the Baseline model. The results show that our model significantly outperforms the Baseline model with an accuracy of 99.6% in recognizing vertical lines, 100% in recognizing horizontal lines, and 96.11% in recognizing handwritten test scores.
Abstract:Toward user-driven Metaverse applications with fast wireless connectivity and tremendous computing demand through future 6G infrastructures, we propose a Brain-Computer Interface (BCI) enabled framework that paves the way for the creation of intelligent human-like avatars. Our approach takes a first step toward the Metaverse systems in which the digital avatars are envisioned to be more intelligent by collecting and analyzing brain signals through cellular networks. In our proposed system, Metaverse users experience Metaverse applications while sending their brain signals via uplink wireless channels in order to create intelligent human-like avatars at the base station. As such, the digital avatars can not only give useful recommendations for the users but also enable the system to create user-driven applications. Our proposed framework involves a mixed decision-making and classification problem in which the base station has to allocate its computing and radio resources to the users and classify the brain signals of users in an efficient manner. To this end, we propose a hybrid training algorithm that utilizes recent advances in deep reinforcement learning to address the problem. Specifically, our hybrid training algorithm contains three deep neural networks cooperating with each other to enable better realization of the mixed decision-making and classification problem. Simulation results show that our proposed framework can jointly address resource allocation for the system and classify brain signals of the users with highly accurate predictions.
Abstract:This paper introduces a novel solution to enable covert communication in wireless systems by using ambient backscatter communication technology. In the considered system, the original message at the transmitter is first divided into two parts: (i) active transmit message and (ii) backscatter message. Then, the active transmit message is transmitted by using the conventional wireless transmission method while the backscatter message is transmitted by backscattering the active transmit signals via an ambient backscatter tag. As the backscatter tag does not generate any active signals, it is intractable for the adversary to detect the backscatter message. Therefore, secret information, e.g., secret key for decryption, can be carried by the backscattered message, making the adversary unable to decode the original message. Simulation results demonstrate that our proposed solution can help to significantly enhance security protection for communication systems.
Abstract:This letter introduces a novel framework to optimize the power allocation for users in a Rate Splitting Multiple Access (RSMA) network. In the network, messages intended for users are split into different parts that are a single common part and respective private parts. This mechanism enables RSMA to flexibly manage interference and thus enhance energy and spectral efficiency. Although possessing outstanding advantages, optimizing power allocation in RSMA is very challenging under the uncertainty of the communication channel and the transmitter has limited knowledge of the channel information. To solve the problem, we first develop a Markov Decision Process framework to model the dynamic of the communication channel. The deep reinforcement algorithm is then proposed to find the optimal power allocation policy for the transmitter without requiring any prior information of the channel. The simulation results show that the proposed scheme can outperform baseline schemes in terms of average sum-rate under different power and QoS requirements.
Abstract:Autonomous Vehicles (AVs) are required to operate safely and efficiently in dynamic environments. For this, the AVs equipped with Joint Radar-Communications (JRC) functions can enhance the driving safety by utilizing both radar detection and data communication functions. However, optimizing the performance of the AV system with two different functions under uncertainty and dynamic of surrounding environments is very challenging. In this work, we first propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions in selecting JRC operation functions under the dynamic and uncertainty of the surrounding environment. We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV without requiring any prior information about surrounding environment. Furthermore, to make our proposed framework more scalable, we develop a Transfer Learning (TL) mechanism that enables the AV to leverage valuable experiences for accelerating the training process when it moves to a new environment. Extensive simulations show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
Abstract:Blockchain-enabled Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO) while keeping data on the mobile devices. Then, the model updates are stored in the blockchain in a decentralized and reliable manner. However, the issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency. The other issue is that the training latency may increase due to the blockchain mining process. To address these issues, the MLMO needs to (i) decide how much data and energy that the mobile devices use for the training and (ii) determine the block generation rate to minimize the system latency, energy consumption, and incentive cost while achieving the target accuracy for the model. Under the uncertainty of the BFL environment, it is challenging for the MLMO to determine the optimal decisions. We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for the MLMO.