Abstract:Compared to natural images, hyperspectral images (HSIs) consist of a large number of bands, with each band capturing different spectral information from a certain wavelength, even some beyond the visible spectrum. These characteristics of HSIs make them highly effective for remote sensing applications. That said, the existing hyperspectral imaging devices introduce severe degradation in HSIs. Hence, hyperspectral image denoising has attracted lots of attention by the community lately. While recent deep HSI denoising methods have provided effective solutions, their performance under real-life complex noise remains suboptimal, as they lack adaptability to new data. To overcome these limitations, in our work, we introduce a self-modulating convolutional neural network which we refer to as SM-CNN, which utilizes correlated spectral and spatial information. At the core of the model lies a novel block, which we call spectral self-modulating residual block (SSMRB), that allows the network to transform the features in an adaptive manner based on the adjacent spectral data, enhancing the network's ability to handle complex noise. In particular, the introduction of SSMRB transforms our denoising network into a dynamic network that adapts its predicted features while denoising every input HSI with respect to its spatio-spectral characteristics. Experimental analysis on both synthetic and real data shows that the proposed SM-CNN outperforms other state-of-the-art HSI denoising methods both quantitatively and qualitatively on public benchmark datasets.
Abstract:LiDAR odometry estimation and 3D semantic segmentation are crucial for autonomous driving, which has achieved remarkable advances recently. However, these tasks are challenging due to the imbalance of points in different semantic categories for 3D semantic segmentation and the influence of dynamic objects for LiDAR odometry estimation, which increases the importance of using representative/salient landmarks as reference points for robust feature learning. To address these challenges, we propose a saliency-guided approach that leverages attention information to improve the performance of LiDAR odometry estimation and semantic segmentation models. Unlike in the image domain, only a few studies have addressed point cloud saliency information due to the lack of annotated training data. To alleviate this, we first present a universal framework to transfer saliency distribution knowledge from color images to point clouds, and use this to construct a pseudo-saliency dataset (i.e. FordSaliency) for point clouds. Then, we adopt point cloud-based backbones to learn saliency distribution from pseudo-saliency labels, which is followed by our proposed SalLiDAR module. SalLiDAR is a saliency-guided 3D semantic segmentation model that integrates saliency information to improve segmentation performance. Finally, we introduce SalLONet, a self-supervised saliency-guided LiDAR odometry network that uses the semantic and saliency predictions of SalLiDAR to achieve better odometry estimation. Our extensive experiments on benchmark datasets demonstrate that the proposed SalLiDAR and SalLONet models achieve state-of-the-art performance against existing methods, highlighting the effectiveness of image-to-LiDAR saliency knowledge transfer. Source code will be available at https://github.com/nevrez/SalLONet.
Abstract:The growing interest in omnidirectional videos (ODVs) that capture the full field-of-view (FOV) has gained 360-degree saliency prediction importance in computer vision. However, predicting where humans look in 360-degree scenes presents unique challenges, including spherical distortion, high resolution, and limited labelled data. We propose a novel vision-transformer-based model for omnidirectional videos named SalViT360 that leverages tangent image representations. We introduce a spherical geometry-aware spatiotemporal self-attention mechanism that is capable of effective omnidirectional video understanding. Furthermore, we present a consistency-based unsupervised regularization term for projection-based 360-degree dense-prediction models to reduce artefacts in the predictions that occur after inverse projection. Our approach is the first to employ tangent images for omnidirectional saliency prediction, and our experimental results on three ODV saliency datasets demonstrate its effectiveness compared to the state-of-the-art.
Abstract:Omnidirectional images, aka 360 images, can deliver immersive and interactive visual experiences. As their popularity has increased dramatically in recent years, evaluating the quality of 360 images has become a problem of interest since it provides insights for capturing, transmitting, and consuming this new media. However, directly adapting quality assessment methods proposed for standard natural images for omnidirectional data poses certain challenges. These models need to deal with very high-resolution data and implicit distortions due to the spherical form of the images. In this study, we present a method for no-reference 360 image quality assessment. Our proposed ST360IQ model extracts tangent viewports from the salient parts of the input omnidirectional image and employs a vision-transformers based module processing saliency selective patches/tokens that estimates a quality score from each viewport. Then, it aggregates these scores to give a final quality score. Our experiments on two benchmark datasets, namely OIQA and CVIQ datasets, demonstrate that as compared to the state-of-the-art, our approach predicts the quality of an omnidirectional image correlated with the human-perceived image quality. The code has been available on https://github.com/Nafiseh-Tofighi/ST360IQ
Abstract:Deep learning models as an emerging topic have shown great progress in various fields. Especially, visualization tools such as class activation mapping methods provided visual explanation on the reasoning of convolutional neural networks (CNNs). By using the gradients of the network layers, it is possible to demonstrate where the networks pay attention during a specific image recognition task. Moreover, these gradients can be integrated with CNN features for localizing more generalized task dependent attentive (salient) objects in scenes. Despite this progress, there is not much explicit usage of this gradient (network attention) information to integrate with CNN representations for object semantics. This can be very useful for visual tasks such as simultaneous localization and mapping (SLAM) where CNN representations of spatially attentive object locations may lead to improved performance. Therefore, in this work, we propose the use of task specific network attention for RGB-D indoor SLAM. To do so, we integrate layer-wise object attention information (layer gradients) with CNN layer representations to improve frame association performance in a state-of-the-art RGB-D indoor SLAM method. Experiments show promising initial results with improved performance.
Abstract:Feed-forward only convolutional neural networks (CNNs) may ignore intrinsic relationships and potential benefits of feedback connections in vision tasks such as saliency detection, despite their significant representation capabilities. In this work, we propose a feedback-recursive convolutional framework (SalFBNet) for saliency detection. The proposed feedback model can learn abundant contextual representations by bridging a recursive pathway from higher-level feature blocks to low-level layer. Moreover, we create a large-scale Pseudo-Saliency dataset to alleviate the problem of data deficiency in saliency detection. We first use the proposed feedback model to learn saliency distribution from pseudo-ground-truth. Afterwards, we fine-tune the feedback model on existing eye-fixation datasets. Furthermore, we present a novel Selective Fixation and Non-Fixation Error (sFNE) loss to make proposed feedback model better learn distinguishable eye-fixation-based features. Extensive experimental results show that our SalFBNet with fewer parameters achieves competitive results on the public saliency detection benchmarks, which demonstrate the effectiveness of proposed feedback model and Pseudo-Saliency data. Source codes and Pseudo-Saliency dataset can be found at https://github.com/gqding/SalFBNet
Abstract:Recognizing objects and scenes are two challenging but essential tasks in image understanding. In particular, the use of RGB-D sensors in handling these tasks has emerged as an important area of focus for better visual understanding. Meanwhile, deep neural networks, specifically convolutional neural networks (CNNs), have become widespread and have been applied to many visual tasks by replacing hand-crafted features with effective deep features. However, it is an open problem how to exploit deep features from a multi-layer CNN model effectively. In this paper, we propose a novel two-stage framework that extracts discriminative feature representations from multi-modal RGB-D images for object and scene recognition tasks. In the first stage, a pretrained CNN model has been employed as a backbone to extract visual features at multiple levels. The second stage maps these features into high level representations with a fully randomized structure of recursive neural networks (RNNs) efficiently. In order to cope with the high dimensionality of CNN activations, a random weighted pooling scheme has been proposed by extending the idea of randomness in RNNs. Multi-modal fusion has been performed through a soft voting approach by computing weights based on individual recognition confidences (i.e. SVM scores) of RGB and depth streams separately. This produces consistent class label estimation in final RGB-D classification performance. Extensive experiments verify that fully randomized structure in RNN stage encodes CNN activations to discriminative solid features successfully. Comparative experimental results on the popular Washington RGB-D Object and SUN RGB-D Scene datasets show that the proposed approach significantly outperforms state-of-the-art methods both in object and scene recognition tasks.
Abstract:Various saliency detection algorithms from color images have been proposed to mimic eye fixation or attentive object detection response of human observers for the same scenes. However, developments on hyperspectral imaging systems enable us to obtain redundant spectral information of the observed scenes from the reflected light source from objects. A few studies using low-level features on hyperspectral images demonstrated that salient object detection can be achieved. In this work, we proposed a salient object detection model on hyperspectral images by applying manifold ranking (MR) on self-supervised Convolutional Neural Network (CNN) features (high-level features) from unsupervised image segmentation task. Self-supervision of CNN continues until clustering loss or saliency maps converges to a defined error between each iteration. Finally, saliency estimations is done as the saliency map at last iteration when the self-supervision procedure terminates with convergence. Experimental evaluations demonstrated that proposed saliency detection algorithm on hyperspectral images is outperforming state-of-the-arts hyperspectral saliency models including the original MR based saliency model.
Abstract:Bottom-up and top-down visual cues are two types of information that helps the visual saliency models. These salient cues can be from spatial distributions of the features (space-based saliency) or contextual / task-dependent features (object based saliency). Saliency models generally incorporate salient cues either in bottom-up or top-down norm separately. In this work, we combine bottom-up and top-down cues from both space and object based salient features on RGB-D data. In addition, we also investigated the ability of various pre-trained convolutional neural networks for extracting top-down saliency on color images based on the object dependent feature activation. We demonstrate that combining salient features from color and dept through bottom-up and top-down methods gives significant improvement on the salient object detection with space based and object based salient cues. RGB-D saliency integration framework yields promising results compared with the several state-of-the-art-models.
Abstract:Many works have been done on salient object detection using supervised or unsupervised approaches on colour images. Recently, a few studies demonstrated that efficient salient object detection can also be implemented by using spectral features in visible spectrum of hyperspectral images from natural scenes. However, these models on hyperspectral salient object detection were tested with a very few number of data selected from various online public dataset, which are not specifically created for object detection purposes. Therefore, here, we aim to contribute to the field by releasing a hyperspectral salient object detection dataset with a collection of 60 hyperspectral images with their respective ground-truth binary images and representative rendered colour images (sRGB). We took several aspects in consideration during the data collection such as variation in object size, number of objects, foreground-background contrast, object position on the image, and etc. Then, we prepared ground truth binary images for each hyperspectral data, where salient objects are labelled on the images. Finally, we did performance evaluation using Area Under Curve (AUC) metric on some existing hyperspectral saliency detection models in literature.