Abstract:Accurate traffic flow prediction heavily relies on the spatio-temporal correlation of traffic flow data. Most current studies separately capture correlations in spatial and temporal dimensions, making it difficult to capture complex spatio-temporal heterogeneity, and often at the expense of increasing model complexity to improve prediction accuracy. Although there have been groundbreaking attempts in the field of spatio-temporal synchronous modeling, significant limitations remain in terms of performance and complexity control.This study proposes a quicker and more effective spatio-temporal synchronous traffic flow forecast model to address these issues.
Abstract:Ensuring safety in both autonomous driving and advanced driver-assistance systems (ADAS) depends critically on the efficient deployment of traffic sign recognition technology. While current methods show effectiveness, they often compromise between speed and accuracy. To address this issue, we present a novel real-time and efficient road sign detection network, YOLO-TS. This network significantly improves performance by optimizing the receptive fields of multi-scale feature maps to align more closely with the size distribution of traffic signs in various datasets. Moreover, our innovative feature-fusion strategy, leveraging the flexibility of Anchor-Free methods, allows for multi-scale object detection on a high-resolution feature map abundant in contextual information, achieving remarkable enhancements in both accuracy and speed. To mitigate the adverse effects of the grid pattern caused by dilated convolutions on the detection of smaller objects, we have devised a unique module that not only mitigates this grid effect but also widens the receptive field to encompass an extensive range of spatial contextual information, thus boosting the efficiency of information usage. Evaluation on challenging public datasets, TT100K and CCTSDB2021, demonstrates that YOLO-TS surpasses existing state-of-the-art methods in terms of both accuracy and speed. The code for our method will be available.
Abstract:Feature selection has attracted significant attention in data mining and machine learning in the past decades. Many existing feature selection methods eliminate redundancy by measuring pairwise inter-correlation of features, whereas the complementariness of features and higher inter-correlation among more than two features are ignored. In this study, a modification item concerning the complementariness of features is introduced in the evaluation criterion of features. Additionally, in order to identify the interference effect of already-selected False Positives (FPs), the redundancy-complementariness dispersion is also taken into account to adjust the measurement of pairwise inter-correlation of features. To illustrate the effectiveness of proposed method, classification experiments are applied with four frequently used classifiers on ten datasets. Classification results verify the superiority of proposed method compared with five representative feature selection methods.