Abstract:Breast cancer is one of the most common causes of death among women worldwide. Early detection helps in reducing the number of deaths. Automated 3D Breast Ultrasound (ABUS) is a newer approach for breast screening, which has many advantages over handheld mammography such as safety, speed, and higher detection rate of breast cancer. Tumor detection, segmentation, and classification are key components in the analysis of medical images, especially challenging in the context of 3D ABUS due to the significant variability in tumor size and shape, unclear tumor boundaries, and a low signal-to-noise ratio. The lack of publicly accessible, well-labeled ABUS datasets further hinders the advancement of systems for breast tumor analysis. Addressing this gap, we have organized the inaugural Tumor Detection, Segmentation, and Classification Challenge on Automated 3D Breast Ultrasound 2023 (TDSC-ABUS2023). This initiative aims to spearhead research in this field and create a definitive benchmark for tasks associated with 3D ABUS image analysis. In this paper, we summarize the top-performing algorithms from the challenge and provide critical analysis for ABUS image examination. We offer the TDSC-ABUS challenge as an open-access platform at https://tdsc-abus2023.grand-challenge.org/ to benchmark and inspire future developments in algorithmic research.
Abstract:Medical image segmentation is a critical task in healthcare applications, and U-Nets have demonstrated promising results. This work delves into the understudied aspect of receptive field (RF) size and its impact on the U-Net and Attention U-Net architectures. This work explores several critical elements including the relationship between RF size, characteristics of the region of interest, and model performance, as well as the balance between RF size and computational costs for U-Net and Attention U-Net methods for different datasets. This work also proposes a mathematical notation for representing the theoretical receptive field (TRF) of a given layer in a network and proposes two new metrics - effective receptive field (ERF) rate and the Object rate to quantify the fraction of significantly contributing pixels within the ERF against the TRF area and assessing the relative size of the segmentation object compared to the TRF size respectively. The results demonstrate that there exists an optimal TRF size that successfully strikes a balance between capturing a wider global context and maintaining computational efficiency, thereby optimizing model performance. Interestingly, a distinct correlation is observed between the data complexity and the required TRF size; segmentation based solely on contrast achieved peak performance even with smaller TRF sizes, whereas more complex segmentation tasks necessitated larger TRFs. Attention U-Net models consistently outperformed their U-Net counterparts, highlighting the value of attention mechanisms regardless of TRF size. These novel insights present an invaluable resource for developing more efficient U-Net-based architectures for medical imaging and pave the way for future exploration. A tool is also developed that calculates the TRF for a U-Net (and Attention U-Net) model, and also suggest an appropriate TRF size for a given model and dataset.
Abstract:Gliomas are one of the most frequent brain tumors and are classified into high grade and low grade gliomas. The segmentation of various regions such as tumor core, enhancing tumor etc. plays an important role in determining severity and prognosis. Here, we have developed a multi-threshold model based on attention U-Net for identification of various regions of the tumor in magnetic resonance imaging (MRI). We propose a multi-path segmentation and built three separate models for the different regions of interest. The proposed model achieved mean Dice Coefficient of 0.59, 0.72, and 0.61 for enhancing tumor, whole tumor and tumor core respectively on the training dataset. The same model gave mean Dice Coefficient of 0.57, 0.73, and 0.61 on the validation dataset and 0.59, 0.72, and 0.57 on the test dataset.