Abstract:Graph Neural Networks (GNN) are indispensable in learning from graph-structured data, yet their rising computational costs, especially on massively connected graphs, pose significant challenges in terms of execution performance. To tackle this, distributed-memory solutions such as partitioning the graph to concurrently train multiple replicas of GNNs are in practice. However, approaches requiring a partitioned graph usually suffer from communication overhead and load imbalance, even under optimal partitioning and communication strategies due to irregularities in the neighborhood minibatch sampling. This paper proposes practical trade-offs for improving the sampling and communication overheads for representation learning on distributed graphs (using popular GraphSAGE architecture) by developing a parameterized continuous prefetch and eviction scheme on top of the state-of-the-art Amazon DistDGL distributed GNN framework, demonstrating about 15-40% improvement in end-to-end training performance on the National Energy Research Scientific Computing Center's (NERSC) Perlmutter supercomputer for various OGB datasets.
Abstract:Image segmentation is a critical enabler for tasks ranging from medical diagnostics to autonomous driving. However, the correct segmentation semantics - where are boundaries located? what segments are logically similar? - change depending on the domain, such that state-of-the-art foundation models can generate meaningless and incorrect results. Moreover, in certain domains, fine-tuning and retraining techniques are infeasible: obtaining labels is costly and time-consuming; domain images (micrographs) can be exponentially diverse; and data sharing (for third-party retraining) is restricted. To enable rapid adaptation of the best segmentation technology, we propose the concept of semantic boosting: given a zero-shot foundation model, guide its segmentation and adjust results to match domain expectations. We apply semantic boosting to the Segment Anything Model (SAM) to obtain microstructure segmentation for transmission electron microscopy. Our booster, SAM-I-Am, extracts geometric and textural features of various intermediate masks to perform mask removal and mask merging operations. We demonstrate a zero-shot performance increase of (absolute) +21.35%, +12.6%, +5.27% in mean IoU, and a -9.91%, -18.42%, -4.06% drop in mean false positive masks across images of three difficulty classes over vanilla SAM (ViT-L).