Abstract:Incorporating conversational context and knowledge into dialogue generation models has been essential for improving the quality of the generated responses. The context, comprising utterances from previous dialogue exchanges, is used as a source of content for response generation and as a means of selecting external knowledge. However, to avoid introducing irrelevant content, it is key to enable fine-grained scoring of context and knowledge. In this paper, we present a novel approach to context and knowledge weighting as an integral part of model training. We guide the model training through a Contextual Knowledge Learning (CKL) process which involves Latent Vectors for context and knowledge, respectively. CKL Latent Vectors capture the relationship between context, knowledge, and responses through weak supervision and enable differential weighting of context utterances and knowledge sentences during the training process. Experiments with two standard datasets and human evaluation demonstrate that CKL leads to a significant improvement compared with the performance of six strong baseline models and shows robustness with regard to reduced sizes of training sets.
Abstract:With large Foundation Models (FMs), language technologies (AI in general) are entering a new paradigm: eliminating the need for developing large-scale task-specific datasets and supporting a variety of tasks through set-ups ranging from zero-shot to few-shot learning. However, understanding FMs capabilities requires a systematic benchmarking effort by comparing FMs performance with the state-of-the-art (SOTA) task-specific models. With that goal, past work focused on the English language and included a few efforts with multiple languages. Our study contributes to ongoing research by evaluating FMs performance for standard Arabic NLP and Speech processing, including a range of tasks from sequence tagging to content classification across diverse domains. We start with zero-shot learning using GPT-3.5-turbo, Whisper, and USM, addressing 33 unique tasks using 59 publicly available datasets resulting in 96 test setups. For a few tasks, FMs performs on par or exceeds the performance of the SOTA models but for the majority it under-performs. Given the importance of prompt for the FMs performance, we discuss our prompt strategies in detail and elaborate on our findings. Our future work on Arabic AI will explore few-shot prompting, expand the range of tasks, and investigate additional open-source models.