HSE University, Russia
Abstract:Retrieval-Augmented Generation allows to enhance Large Language Models with external knowledge. In response to the recent popularity of generative LLMs, many RAG approaches have been proposed, which involve an intricate number of different configurations such as evaluation datasets, collections, metrics, retrievers, and LLMs. Inconsistent benchmarking poses a major challenge in comparing approaches and understanding the impact of each component in the pipeline. In this work, we study best practices that lay the groundwork for a systematic evaluation of RAG and present BERGEN, an end-to-end library for reproducible research standardizing RAG experiments. In an extensive study focusing on QA, we benchmark different state-of-the-art retrievers, rerankers, and LLMs. Additionally, we analyze existing RAG metrics and datasets. Our open-source library BERGEN is available under \url{https://github.com/naver/bergen}.
Abstract:We focus on multi-domain Neural Machine Translation, with the goal of developing efficient models which can handle data from various domains seen during training and are robust to domains unseen during training. We hypothesize that Sparse Mixture-of-Experts (SMoE) models are a good fit for this task, as they enable efficient model scaling, which helps to accommodate a variety of multi-domain data, and allow flexible sharing of parameters between domains, potentially enabling knowledge transfer between similar domains and limiting negative transfer. We conduct a series of experiments aimed at validating the utility of SMoE for the multi-domain scenario, and find that a straightforward width scaling of Transformer is a simpler and surprisingly more efficient approach in practice, and reaches the same performance level as SMoE. We also search for a better recipe for robustness of multi-domain systems, highlighting the importance of mixing-in a generic domain, i.e. Paracrawl, and introducing a simple technique, domain randomization.
Abstract:Retrieval-augmented generation (RAG) has recently emerged as a promising solution for incorporating up-to-date or domain-specific knowledge into large language models (LLMs) and improving LLM factuality, but is predominantly studied in English-only settings. In this work, we consider RAG in the multilingual setting (mRAG), i.e. with user queries and the datastore in 13 languages, and investigate which components and with which adjustments are needed to build a well-performing mRAG pipeline, that can be used as a strong baseline in future works. Our findings highlight that despite the availability of high-quality off-the-shelf multilingual retrievers and generators, task-specific prompt engineering is needed to enable generation in user languages. Moreover, current evaluation metrics need adjustments for multilingual setting, to account for variations in spelling named entities. The main limitations to be addressed in future works include frequent code-switching in non-Latin alphabet languages, occasional fluency errors, wrong reading of the provided documents, or irrelevant retrieval. We release the code for the resulting mRAG baseline pipeline at https://github.com/naver/bergen.
Abstract:Instruction tuning (IT) is widely used to teach pretrained large language models (LLMs) to follow arbitrary instructions, but is under-studied in multilingual settings. In this work, we conduct a systematic study of zero-shot cross-lingual transfer in IT, when an LLM is instruction-tuned on English-only data and then tested on user prompts in other languages. We investigate the influence of model configuration choices and devise a multi-facet evaluation strategy for multilingual instruction following. We find that cross-lingual transfer does happen successfully in IT even if all stages of model training are English-centric, but only if multiliguality is taken into account in hyperparameter tuning and with large enough IT data. English-trained LLMs are capable of generating correct-language, comprehensive and helpful responses in the other languages, but suffer from low factuality and may occasionally have fluency errors.
Abstract:Zero-shot cross-lingual generation implies finetuning of the multilingual pretrained language model on a generation task in one language and then using it to make predictions for this task in other languages. Previous works notice a frequent problem of generation in a wrong language and propose approaches to address it, usually using mT5 as a backbone model. In this work we compare various approaches proposed from the literature in unified settings, also including alternative backbone models, namely mBART and NLLB-200. We first underline the importance of tuning learning rate used for finetuning, which helps to substantially alleviate the problem of generation in the wrong language. Then, we show that with careful learning rate tuning, the simple full finetuning of the model acts as a very strong baseline and alternative approaches bring only marginal improvements. Finally, we find that mBART performs similarly to mT5 of the same size, and NLLB-200 can be competitive in some cases. Our final models reach the performance of the approach based on data translation which is usually considered as an upper baseline for zero-shot cross-lingual generation.
Abstract:Zero-shot cross-lingual generation assumes finetuning the multilingual pretrained language model (mPLM) on a generation task in one language and then using it to make predictions for this task in other languages. Previous works notice a frequent problem of generation in a wrong language and propose approaches to address it, usually using mT5 as a backbone model. In this work, we test alternative mPLMs, such as mBART and NLLB, considering full finetuning and parameter-efficient finetuning with adapters. We find that mBART with adapters performs similarly to mT5 of the same size, and NLLB can be competitive in some cases. We also underline the importance of tuning learning rate used for finetuning, which helps to alleviate the problem of generation in the wrong language.
Abstract:Recent works have widely adopted large language model pretraining for source code, suggested source code-specific pretraining objectives and investigated the applicability of various Transformer-based language model architectures for source code. This work investigates another important aspect of such models, namely the effect of different subtokenization options, and aims at identifying most effective and length-efficient subtokenizations, taking into account code specifics. We propose subtokenziation that reduces average length by 17% without downstream performance drop, and show that a carefully chosen subtokenization may improve quality by 0.5-2%, possibly with some length increase.
Abstract:Autoregressive language models (LMs) map token sequences to probabilities. The usual practice for computing the probability of any character string (e.g. English sentences) is to first transform it into a sequence of tokens that is scored by the model. However, there are exponentially many token sequences that represent any given string. To truly compute the probability of a string one should marginalize over all tokenizations, which is typically intractable. Here, we analyze whether the practice of ignoring the marginalization is justified. To this end, we devise an importance-sampling-based algorithm that allows us to compute estimates of the marginal probabilities and compare them to the default procedure in a range of state-of-the-art models and datasets. Our results show that the gap in log-likelihood is no larger than 0.5% in most cases, but that it becomes more pronounced for data with long complex words.
Abstract:Pretrained Transformers achieve state-of-the-art performance in various code-processing tasks but may be too large to be deployed. As software development tools often incorporate modules for various purposes which may potentially use a single instance of the pretrained model, it appears relevant to utilize parameter-efficient fine-tuning for the pretrained models of code. In this work, we test two widely used approaches, adapters and LoRA, which were initially tested on NLP tasks, on four code-processing tasks. We find that though the efficient fine-tuning approaches may achieve comparable or higher performance than the standard, full, fine-tuning in code understanding tasks, they underperform full fine-tuning in code-generative tasks. These results underline the importance of testing efficient fine-tuning approaches on other domains than NLP and motivate future research in efficient fine-tuning for source code.
Abstract:Deep learning models are widely used for solving challenging code processing tasks, such as code generation or code summarization. Traditionally, a specific model architecture was carefully built to solve a particular code processing task. However, recently general pretrained models such as CodeBERT or CodeT5 have been shown to outperform task-specific models in many applications. While pretrained models are known to learn complex patterns from data, they may fail to understand some properties of source code. To test diverse aspects of code understanding, we introduce a set of diagnosting probing tasks. We show that pretrained models of code indeed contain information about code syntactic structure and correctness, the notions of identifiers, data flow and namespaces, and natural language naming. We also investigate how probing results are affected by using code-specific pretraining objectives, varying the model size, or finetuning.