Abstract:By promising more accurate diagnostics and individual treatment recommendations, deep neural networks and in particular convolutional neural networks have advanced to a powerful tool in medical imaging. Here, we first give an introduction into methodological key concepts and resulting methodological promises including representation and transfer learning, as well as modelling domain-specific priors. After reviewing recent applications within neuroimaging-based psychiatric research, such as the diagnosis of psychiatric diseases, delineation of disease subtypes, normative modeling, and the development of neuroimaging biomarkers, we discuss current challenges. This includes for example the difficulty of training models on small, heterogeneous and biased data sets, the lack of validity of clinical labels, algorithmic bias, and the influence of confounding variables.
Abstract:In this work we focus on the well-known Euclidean Traveling Salesperson Problem (TSP) and two highly competitive inexact heuristic TSP solvers, EAX and LKH, in the context of per-instance algorithm selection (AS). We evolve instances with 1,000 nodes where the solvers show strongly different performance profiles. These instances serve as a basis for an exploratory study on the identification of well-discriminating problem characteristics (features). Our results in a nutshell: we show that even though (1) promising features exist, (2) these are in line with previous results from the literature, and (3) models trained with these features are more accurate than models adopting sophisticated feature selection methods, the advantage is not close to the virtual best solver in terms of penalized average runtime and so is the performance gain over the single best solver. However, we show that a feature-free deep neural network based approach solely based on visual representation of the instances already matches classical AS model results and thus shows huge potential for future studies.
Abstract:Artificial neural networks in general and deep learning networks in particular established themselves as popular and powerful machine learning algorithms. While the often tremendous sizes of these networks are beneficial when solving complex tasks, the tremendous number of parameters also causes such networks to be vulnerable to malicious behavior such as adversarial perturbations. These perturbations can change a model's classification decision. Moreover, while single-step adversaries can easily be transferred from network to network, the transfer of more powerful multi-step adversaries has - usually -- been rather difficult. In this work, we introduce a method for generating strong ad-versaries that can easily (and frequently) be transferred between different models. This method is then used to generate a large set of adversaries, based on which the effects of selected defense methods are experimentally assessed. At last, we introduce a novel, simple, yet effective approach to enhance the resilience of neural networks against adversaries and benchmark it against established defense methods. In contrast to the already existing methods, our proposed defense approach is much more efficient as it only requires a single additional forward-pass to achieve comparable performance results.