Abstract:Deep neural networks (DNNs) have made significant strides in tackling challenging tasks in wireless systems, especially when an accurate wireless model is not available. However, when available data is limited, traditional DNNs often yield subpar results due to underfitting. At the same time, large language models (LLMs) exemplified by GPT-3, have remarkably showcased their capabilities across a broad range of natural language processing tasks. But whether and how LLMs can benefit challenging non-language tasks in wireless systems is unexplored. In this work, we propose to leverage the in-context learning ability (a.k.a. prompting) of LLMs to solve wireless tasks in the low data regime without any training or fine-tuning, unlike DNNs which require training. We further demonstrate that the performance of LLMs varies significantly when employed with different prompt templates. To solve this issue, we employ the latest LLM calibration methods. Our results reveal that using LLMs via ICL methods generally outperforms traditional DNNs on the symbol demodulation task and yields highly confident predictions when coupled with calibration techniques.
Abstract:In-context learning (ICL) is a new paradigm for natural language processing that utilizes Generative Pre-trained Transformer (GPT)-like models. This approach uses prompts that include in-context demonstrations to generate the corresponding output for a new query input. However, applying ICL in real cases does not scale with the number of samples, and lacks robustness to different prompt templates and demonstration permutations. In this paper, we first show that GPT-like models using ICL result in unreliable predictions based on a new metric based on Shannon entropy. Then, to solve this problem, we propose a new technique called the Linear Probe Calibration (LinC), a method that calibrates the model's output probabilities, resulting in reliable predictions and improved performance, while requiring only minimal additional samples (as few as five labeled data samples). LinC significantly enhances the ICL test performance of GPT models on various benchmark datasets, with an average improvement of up to 21%, and up to a 50% improvement in some cases, and significantly boosts the performance of PEFT methods, especially in the low resource regime. Moreover, LinC achieves lower expected calibration error, and is highly robust to varying label proportions, prompt templates, and demonstration permutations. Our code is available at \url{https://github.com/mominabbass/LinC}.
Abstract:Model-agnostic meta learning (MAML) is currently one of the dominating approaches for few-shot meta-learning. Albeit its effectiveness, the optimization of MAML can be challenging due to the innate bilevel problem structure. Specifically, the loss landscape of MAML is much more complex with possibly more saddle points and local minimizers than its empirical risk minimization counterpart. To address this challenge, we leverage the recently invented sharpness-aware minimization and develop a sharpness-aware MAML approach that we term Sharp-MAML. We empirically demonstrate that Sharp-MAML and its computation-efficient variant can outperform popular existing MAML baselines (e.g., $+12\%$ accuracy on Mini-Imagenet). We complement the empirical study with the convergence rate analysis and the generalization bound of Sharp-MAML. To the best of our knowledge, this is the first empirical and theoretical study on sharpness-aware minimization in the context of bilevel learning. The code is available at https://github.com/mominabbass/Sharp-MAML.