Abstract:This paper proposes a decentralized trajectory planning framework for the collision avoidance problem of multiple micro aerial vehicles (MAVs) in environments with static and dynamic obstacles. The framework utilizes spatiotemporal occupancy grid maps (SOGM), which forecast the occupancy status of neighboring space in the near future, as the environment representation. Based on this representation, we extend the kinodynamic A* and the corridor-constrained trajectory optimization algorithms to efficiently tackle static and dynamic obstacles with arbitrary shapes. Collision avoidance between communicating robots is integrated by sharing planned trajectories and projecting them onto the SOGM. The simulation results show that our method achieves competitive performance against state-of-the-art methods in dynamic environments with different numbers and shapes of obstacles. Finally, the proposed method is validated in real experiments.
Abstract:Dynamic obstacle avoidance is a popular research topic for autonomous systems, such as micro aerial vehicles and service robots. Accurately evaluating the performance of dynamic obstacle avoidance methods necessitates the establishment of a metric to quantify the environment's difficulty, a crucial aspect that remains unexplored. In this paper, we propose four metrics to measure the difficulty of dynamic environments. These metrics aim to comprehensively capture the influence of obstacles' number, size, velocity, and other factors on the difficulty. We compare the proposed metrics with existing static environment difficulty metrics and validate them through over 1.5 million trials in a customized simulator. This simulator excludes the effects of perception and control errors and supports different motion and gaze planners for obstacle avoidance. The results indicate that the survivability metric outperforms and establishes a monotonic relationship between the success rate, with a Spearman's Rank Correlation Coefficient (SRCC) of over 0.9. Specifically, for every planner, lower survivability leads to a higher success rate. This metric not only facilitates fair and comprehensive benchmarking but also provides insights for refining collision avoidance methods, thereby furthering the evolution of autonomous systems in dynamic environments.