Chittagong University of Engineering & Technology, Chittagong, Bangladesh
Abstract:Bangladesh is predominantly an agricultural country, where the agrarian sector plays an essential role in accelerating economic growth and enabling the food security of the people. The performance of this sector has an overwhelming impact on the primary macroeconomic objectives like food security, employment generation, poverty alleviation, human resources development, and other economic and social forces. Although Bangladesh's labor-intensive agriculture has achieved steady increases in food grain production, it often suffered from unfavorable weather conditions such as heavy rainfall, low temperature, and drought. Consequently, these factors hinder the production of food substantially, putting the country's overall food security in danger. In order to have a profitable, sustainable, and farmer-friendly agricultural practice, this paper proposes a context-based crop recommendation system powered by a weather forecast model. With extensive evaluation, the multivariate Stacked Bi-LSTM Network is employed as the weather forecasting model. The proposed weather model can forecast Rainfall, Temperature, Humidity, and Sunshine for any given location in Bangladesh with higher accuracy. These predictions guide our system to assist the farmers in making feasible decisions about planting, irrigation, harvesting, and so on. Additionally, our full-fledged system is capable of alerting the farmers about extreme weather conditions so that preventive measures can be undertaken to protect the crops. Finally, the system is also adept at making knowledge-based crop suggestions for the flood and drought-prone regions of Bangladesh.
Abstract:Intent classification is a fundamental task in natural language understanding, aiming to categorize user queries or sentences into predefined classes to understand user intent. The most challenging aspect of this particular task lies in effectively incorporating all possible classes of intent into a dataset while ensuring adequate linguistic variation. Plenty of research has been conducted in the related domains in rich-resource languages like English. In this study, we introduce BNIntent30, a comprehensive Bengali intent classification dataset containing 30 intent classes. The dataset is excerpted and translated from the CLINIC150 dataset containing a diverse range of user intents categorized over 150 classes. Furthermore, we propose a novel approach for Bengali intent classification using Generative Adversarial BERT to evaluate the proposed dataset, which we call GAN-BnBERT. Our approach leverages the power of BERT-based contextual embeddings to capture salient linguistic features and contextual information from the text data, while the generative adversarial network (GAN) component complements the model's ability to learn diverse representations of existing intent classes through generative modeling. Our experimental results demonstrate that the GAN-BnBERT model achieves superior performance on the newly introduced BNIntent30 dataset, surpassing the existing Bi-LSTM and the stand-alone BERT-based classification model.