Abstract:In last few decades, a lot of progress has been made in the field of face detection. Various face detection methods have been proposed by numerous researchers working in this area. The two well-known benchmarking platform: the FDDB and WIDER face detection provide quite challenging scenarios to assess the efficacy of the detection methods. These benchmarking data sets are mostly created using images from the public network ie. the Internet. A recent, face detection and open-set recognition challenge has shown that those same face detection algorithms produce high false alarms for images taken in surveillance scenario. This shows the difficult nature of the surveillance environment. Our proposed body pose based face detection method was one of the top performers in this competition. In this paper, we perform a comparative performance analysis of some of the well known face detection methods including the few used in that competition, and, compare them to our proposed body pose based face detection method. Experiment results show that, our proposed method that leverages body information to detect faces, is the most realistic approach in terms of accuracy, false alarms and average detection time, when surveillance scenario is in consideration.
Abstract:Face detection and recognition benchmarks have shifted toward more difficult environments. The challenge presented in this paper addresses the next step in the direction of automatic detection and identification of people from outdoor surveillance cameras. While face detection has shown remarkable success in images collected from the web, surveillance cameras include more diverse occlusions, poses, weather conditions and image blur. Although face verification or closed-set face identification have surpassed human capabilities on some datasets, open-set identification is much more complex as it needs to reject both unknown identities and false accepts from the face detector. We show that unconstrained face detection can approach high detection rates albeit with moderate false accept rates. By contrast, open-set face recognition is currently weak and requires much more attention.
Abstract:We propose a new deep network structure for unconstrained face recognition. The proposed network integrates several key components together in order to characterize complex data distributions, such as in unconstrained face images. Inspired by recent progress in deep networks, we consider some important concepts, including multi-scale feature learning, dense connections of network layers, and weighting different network flows, for building our deep network structure. The developed network is evaluated in unconstrained face matching, showing the capability of learning complex data distributions caused by face images with various qualities.