Abstract:Face detection and recognition benchmarks have shifted toward more difficult environments. The challenge presented in this paper addresses the next step in the direction of automatic detection and identification of people from outdoor surveillance cameras. While face detection has shown remarkable success in images collected from the web, surveillance cameras include more diverse occlusions, poses, weather conditions and image blur. Although face verification or closed-set face identification have surpassed human capabilities on some datasets, open-set identification is much more complex as it needs to reject both unknown identities and false accepts from the face detector. We show that unconstrained face detection can approach high detection rates albeit with moderate false accept rates. By contrast, open-set face recognition is currently weak and requires much more attention.
Abstract:Current logo retrieval research focuses on closed set scenarios. We argue that the logo domain is too large for this strategy and requires an open set approach. To foster research in this direction, a large-scale logo dataset, called Logos in the Wild, is collected and released to the public. A typical open set logo retrieval application is, for example, assessing the effectiveness of advertisement in sports event broadcasts. Given a query sample in shape of a logo image, the task is to find all further occurrences of this logo in a set of images or videos. Currently, common logo retrieval approaches are unsuitable for this task because of their closed world assumption. Thus, an open set logo retrieval method is proposed in this work which allows searching for previously unseen logos by a single query sample. A two stage concept with separate logo detection and comparison is proposed where both modules are based on task specific CNNs. If trained with the Logos in the Wild data, significant performance improvements are observed, especially compared with state-of-the-art closed set approaches.