Abstract:For object detection task with noisy labels, it is important to consider not only categorization noise, as in image classification, but also localization noise, missing annotations, and bogus bounding boxes. However, previous studies have only addressed certain types of noise (e.g., localization or categorization). In this paper, we propose Universal-Noise Annotation (UNA), a more practical setting that encompasses all types of noise that can occur in object detection, and analyze how UNA affects the performance of the detector. We analyzed the development direction of previous works of detection algorithms and examined the factors that impact the robustness of detection model learning method. We open-source the code for injecting UNA into the dataset and all the training log and weight are also shared.
Abstract:We propose a novel framework for 3D-aware object manipulation, called Auto-Encoding Neural Radiance Fields (AE-NeRF). Our model, which is formulated in an auto-encoder architecture, extracts disentangled 3D attributes such as 3D shape, appearance, and camera pose from an image, and a high-quality image is rendered from the attributes through disentangled generative Neural Radiance Fields (NeRF). To improve the disentanglement ability, we present two losses, global-local attribute consistency loss defined between input and output, and swapped-attribute classification loss. Since training such auto-encoding networks from scratch without ground-truth shape and appearance information is non-trivial, we present a stage-wise training scheme, which dramatically helps to boost the performance. We conduct experiments to demonstrate the effectiveness of the proposed model over the latest methods and provide extensive ablation studies.
Abstract:Establishing dense correspondences across semantically similar images is one of the challenging tasks due to the significant intra-class variations and background clutters. To solve these problems, numerous methods have been proposed, focused on learning feature extractor or cost aggregation independently, which yields sub-optimal performance. In this paper, we propose a novel framework for jointly learning feature extraction and cost aggregation for semantic correspondence. By exploiting the pseudo labels from each module, the networks consisting of feature extraction and cost aggregation modules are simultaneously learned in a boosting fashion. Moreover, to ignore unreliable pseudo labels, we present a confidence-aware contrastive loss function for learning the networks in a weakly-supervised manner. We demonstrate our competitive results on standard benchmarks for semantic correspondence.