Abstract:Reliable lane-following algorithms are essential for safe and effective autonomous driving. This project was primarily focused on developing and evaluating different lane-following programs to find the most reliable algorithm for a Vehicle to Everything (V2X) project. The algorithms were first tested on a simulator and then with real vehicles equipped with a drive-by-wire system using ROS (Robot Operating System). Their performance was assessed through reliability, comfort, speed, and adaptability metrics. The results show that the two most reliable approaches detect both lane lines and use unsupervised learning to separate them. These approaches proved to be robust in various driving scenarios, making them suitable candidates for integration into the V2X project.
Abstract:Recent advances in autonomous vehicle technologies and cellular network speeds motivate developments in vehicle-to-everything (V2X) communications. Enhanced road safety features and improved fuel efficiency are some of the motivations behind V2X for future transportation systems. Adaptive intersection control systems have considerable potential to achieve these goals by minimizing idle times and predicting short-term future traffic conditions. Integrating V2X into traffic management systems introduces the infrastructure necessary to make roads safer for all users and initiates the shift towards more intelligent and connected cities. To demonstrate our solution, we implement both a simulated and real-world representation of a 4-way intersection and crosswalk scenario with 2 self-driving electric vehicles, a roadside unit (RSU), and traffic light. Our architecture minimizes fuel consumption through intersections by reducing acceleration and braking by up to 75.35%. We implement a cost-effective solution to intelligent and connected intersection control to serve as a proof-of-concept model suitable as the basis for continued research and development. Code for this project is available at https://github.com/MMachado05/REU-2024.
Abstract:Artificial Intelligence (AI) is becoming ubiquitous in domains such as medicine and natural science research. However, when AI systems are implemented in practice, domain experts often refuse them. Low acceptance hinders effective human-AI collaboration, even when it is essential for progress. In natural science research, scientists' ineffective use of AI-enabled systems can impede them from analysing their data and advancing their research. We conducted an ethnographically informed study of 10 in-depth interviews with AI practitioners and natural scientists at the organisation facing low adoption of algorithmic systems. Results were consolidated into recommendations for better AI adoption: i) actively supporting experts during the initial stages of system use, ii) communicating the capabilities of a system in a user-relevant way, and iii) following predefined collaboration rules. We discuss the broader implications of our findings and expand on how our proposed requirements could support practitioners and experts across domains.
Abstract:Both the Bayes factor and the relative belief ratio satisfy the principle of evidence and so can be seen to be valid measures of statistical evidence. The question then is: which of these measures of evidence is more appropriate? Certainly Bayes factors are commonly used. It is argued here that there are questions concerning the validity of a current commonly used definition of the Bayes factor and, when all is considered, the relative belief ratio is a much more appropriate measure of evidence. Several general criticisms of these measures of evidence are also discussed and addressed.