University of Toronto Institute for Aerospace Studies
Abstract:Tiny aerial robots show promise for applications like environmental monitoring and search-and-rescue but face challenges in control due to their limited computing power and complex dynamics. Model Predictive Control (MPC) can achieve agile trajectory tracking and handle constraints. Although current learning-based MPC methods, such as Gaussian Process (GP) MPC, improve control performance by learning residual dynamics, they are computationally demanding, limiting their onboard application on tiny robots. This paper introduces Tiny Learning-Based Model Predictive Control (LB MPC), a novel framework for resource-constrained micro multirotor platforms. By exploiting multirotor dynamics' structure and developing an efficient solver, our approach enables high-rate control at 100 Hz on a Crazyflie 2.1 with a Teensy 4.0 microcontroller. We demonstrate a 23\% average improvement in tracking performance over existing embedded MPC methods, achieving the first onboard implementation of learning-based MPC on a tiny multirotor (53 g).
Abstract:Landing a multirotor unmanned aerial vehicle (UAV) on an uncrewed surface vessel (USV) extends the operational range and offers recharging capabilities for maritime and limnology applications, such as search-and-rescue and environmental monitoring. However, autonomous UAV landings on USVs are challenging due to the unpredictable tilt and motion of the vessel caused by waves. This movement introduces spatial and temporal uncertainties, complicating safe, precise landings. Existing autonomous landing techniques on unmanned ground vehicles (UGVs) rely on shared state information, often causing time delays due to communication limits. This paper introduces a learning-based distributed Model Predictive Control (MPC) framework for autonomous UAV landings on USVs in wave-like conditions. Each vehicle's MPC optimizes for an artificial goal and input, sharing only the goal with the other vehicle. These goals are penalized by coupling and platform tilt costs, learned as a Gaussian Process (GP). We validate our framework in comprehensive indoor experiments using a custom-designed platform attached to a UGV to simulate USV tilting motion. Our approach achieves a 53% increase in landing success compared to an approach that neglects the impact of tilt motion on landing.
Abstract:Heterogeneous autonomous robot teams consisting of multirotor and uncrewed surface vessels (USVs) have the potential to enable various maritime applications, including advanced search-and-rescue operations. A critical requirement of these applications is the ability to land a multirotor on a USV for tasks such as recharging. This paper addresses the challenge of safely landing a multirotor on a cooperative USV in harsh open waters. To tackle this problem, we propose a novel sequential distributed model predictive control (MPC) scheme for cooperative multirotor-USV landing. Our approach combines standard tracking MPCs for the multirotor and USV with additional artificial intermediate goal locations. These artificial goals enable the robots to coordinate their cooperation without prior guidance. Each vehicle solves an individual optimization problem for both the artificial goal and an input that tracks it but only communicates the former to the other vehicle. The artificial goals are penalized by a suitable coupling cost. Furthermore, our proposed distributed MPC scheme utilizes a spatial-temporal wave model to coordinate in real-time a safer landing location and time the multirotor's landing to limit severe tilt of the USV.
Abstract:Neglecting complex aerodynamic effects hinders high-speed yet high-precision multirotor autonomy. In this paper, we present a computationally efficient learning-based model predictive controller that simultaneously optimizes a trajectory that can be tracked within the physical limits (on thrust and orientation) of the multirotor system despite unknown aerodynamic forces and adapts the control input. To do this, we leverage the well-known differential flatness property of multirotors, which allows us to transform their nonlinear dynamics into a linear model. The main limitation of current flatness-based planning and control approaches is that they often neglect dynamic feasibility. This is because these constraints are nonlinear as a result of the mapping between the input, i.e., multirotor thrust, and the flat state. In our approach, we learn a novel representation of the drag forces by learning the mapping from the flat state to the multirotor thrust vector (in a world frame) as a Gaussian Process (GP). Our proposed approach leverages the properties of GPs to develop a convex optimal controller that can be iteratively solved as a second-order cone program (SOCP). In simulation experiments, our proposed approach outperforms related model predictive controllers that do not account for aerodynamic effects on trajectory feasibility, leading to a reduction of up to 55% in absolute tracking error.
Abstract:Shared benchmark problems have historically been a fundamental driver of progress for scientific communities. In the context of academic conferences, competitions offer the opportunity to researchers with different origins, backgrounds, and levels of seniority to quantitatively compare their ideas. In robotics, a hot and challenging topic is sim2real-porting approaches that work well in simulation to real robot hardware. In our case, creating a hybrid competition with both simulation and real robot components was also dictated by the uncertainties around travel and logistics in the post-COVID-19 world. Hence, this article motivates and describes an aerial sim2real robot competition that ran during the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, from the specification of the competition task, to the details of the software infrastructure supporting simulation and real-life experiments, to the approaches of the top-placed teams and the lessons learned by participants and organizers.
Abstract:Learning-based optimal control algorithms control unknown systems using past trajectory data and a learned model of the system dynamics. These controllers use either a linear approximation of the learned dynamics, trading performance for faster computation, or nonlinear optimization methods, which typically perform better but can limit real-time applicability. In this work, we present a novel nonlinear controller that exploits differential flatness to achieve similar performance to state-of-the-art learning-based controllers but with significantly less computational effort. Differential flatness is a property of dynamical systems whereby nonlinear systems can be exactly linearized through a nonlinear input mapping. Here, the nonlinear transformation is learned as a Gaussian process and is used in a safety filter that guarantees, with high probability, stability as well as input and flat state constraint satisfaction. This safety filter is then used to refine inputs from a flat model predictive controller to perform constrained nonlinear learning-based optimal control through two successive convex optimizations. We compare our method to state-of-the-art learning-based control strategies and achieve similar performance, but with significantly better computational efficiency, while also respecting flat state and input constraints, and guaranteeing stability.
Abstract:Current control design for fast vision-based flight tends to rely on high-rate, high-dimensional and perfect state estimation. This is challenging in real-world environments due to imperfect sensing and state estimation drift and noise. In this letter, we present an alternative control design that bypasses the need for a state estimate by exploiting discrete-time flatness. To the best of our knowledge, this is the first work to demonstrate that discrete-time flatness holds for the Euler discretization of multirotor dynamics. This allows us to design a controller using only a window of input and output information. We highlight in simulation how exploiting this property in control design can provide robustness to noisy output measurements (where estimating higher-order derivatives and the full state can be challenging). Fast vision-based navigation requires high performance flight despite possibly noisy high-rate real-time position estimation. In outdoor experiments, we show the application of discrete-time flatness to vision-based flight at speeds up to 10 m/s and how it can outperform controllers that hinge on accurate state estimation.
Abstract:In recent years, reinforcement learning and learning-based control -- as well as the study of their safety, crucial for deployment in real-world robots -- have gained significant traction. However, to adequately gauge the progress and applicability of new results, we need the tools to equitably compare the approaches proposed by the controls and reinforcement learning communities. Here, we propose a new open-source benchmark suite, called safe-control-gym. Our starting point is OpenAI's Gym API, which is one of the de facto standard in reinforcement learning research. Yet, we highlight the reasons for its limited appeal to control theory researchers -- and safe control, in particular. E.g., the lack of analytical models and constraint specifications. Thus, we propose to extend this API with (i) the ability to specify (and query) symbolic models and constraints and (ii) introduce simulated disturbances in the control inputs, measurements, and inertial properties. We provide implementations for three dynamic systems -- the cart-pole, 1D, and 2D quadrotor -- and two control tasks -- stabilization and trajectory tracking. To demonstrate our proposal -- and in an attempt to bring research communities closer together -- we show how to use safe-control-gym to quantitatively compare the control performance, data efficiency, and safety of multiple approaches from the areas of traditional control, learning-based control, and reinforcement learning.
Abstract:The last half-decade has seen a steep rise in the number of contributions on safe learning methods for real-world robotic deployments from both the control and reinforcement learning communities. This article provides a concise but holistic review of the recent advances made in using machine learning to achieve safe decision making under uncertainties, with a focus on unifying the language and frameworks used in control theory and reinforcement learning research. Our review includes: learning-based control approaches that safely improve performance by learning the uncertain dynamics, reinforcement learning approaches that encourage safety or robustness, and methods that can formally certify the safety of a learned control policy. As data- and learning-based robot control methods continue to gain traction, researchers must understand when and how to best leverage them in real-world scenarios where safety is imperative, such as when operating in close proximity to humans. We highlight some of the open challenges that will drive the field of robot learning in the coming years, and emphasize the need for realistic physics-based benchmarks to facilitate fair comparisons between control and reinforcement learning approaches.
Abstract:Redundant navigation systems are critical for safe operation of UAVs in high-risk environments. Since most commercial UAVs almost wholly rely on GPS, jamming, interference and multi-pathing are real concerns that usually limit their operations to low-risk environments and Visual Line-Of-Sight. This paper presents a vision-based route-following system for the autonomous, safe return of UAVs under primary navigation failure such as GPS jamming. Using a Visual Teach & Repeat framework to build a visual map of the environment during an outbound flight, we show the autonomous return of the UAV by visually localising the live view to this map when a simulated GPS failure occurs, controlling the vehicle to follow the safe outbound path back to the launch point. Using gimbal-stabilised stereo vision alone, without reliance on external infrastructure or inertial sensing, visual odometry and localisation are achieved at altitudes of 5-25 m and flight speeds up to 55 km/h. We examine the performance of the visual localisation algorithm under a variety of conditions and also demonstrate closed-loop autonomy along a complicated 450 m path.