The Department of Information, Risk and Operations Management, The University of Texas at Austin
Abstract:Biased human decisions have consequential impacts across various domains, yielding unfair treatment of individuals and resulting in suboptimal outcomes for organizations and society. In recognition of this fact, organizations regularly design and deploy interventions aimed at mitigating these biases. However, measuring human decision biases remains an important but elusive task. Organizations are frequently concerned with mistaken decisions disproportionately affecting one group. In practice, however, this is typically not possible to assess due to the scarcity of a gold standard: a label that indicates what the correct decision would have been. In this work, we propose a machine learning-based framework to assess bias in human-generated decisions when gold standard labels are scarce. We provide theoretical guarantees and empirical evidence demonstrating the superiority of our method over existing alternatives. This proposed methodology establishes a foundation for transparency in human decision-making, carrying substantial implications for managerial duties, and offering potential for alleviating algorithmic biases when human decisions are used as labels to train algorithms.
Abstract:Biased human decisions have consequential impacts across various domains, yielding unfair treatment of individuals and resulting in suboptimal outcomes for organizations and society. In recognition of this fact, organizations regularly design and deploy interventions aimed at mitigating these biases. However, measuring human decision biases remains an important but elusive task. Organizations are frequently concerned with mistaken decisions disproportionately affecting one group. In practice, however, this is typically not possible to assess due to the scarcity of a gold standard: a label that indicates what the correct decision would have been. In this work, we propose a machine learning-based framework to assess bias in human-generated decisions when gold standard labels are scarce. We provide theoretical guarantees and empirical evidence demonstrating the superiority of our method over existing alternatives. This proposed methodology establishes a foundation for transparency in human decision-making, carrying substantial implications for managerial duties, and offering potential for alleviating algorithmic biases when human decisions are used as labels to train algorithms.
Abstract:Problem Definition. Increasing costs of healthcare highlight the importance of effective disease prevention. However, decision models for allocating preventive care are lacking. Methodology/Results. In this paper, we develop a data-driven decision model for determining a cost-effective allocation of preventive treatments to patients at risk. Specifically, we combine counterfactual inference, machine learning, and optimization techniques to build a scalable decision model that can exploit high-dimensional medical data, such as the data found in modern electronic health records. Our decision model is evaluated based on electronic health records from 89,191 prediabetic patients. We compare the allocation of preventive treatments (metformin) prescribed by our data-driven decision model with that of current practice. We find that if our approach is applied to the U.S. population, it can yield annual savings of $1.1 billion. Finally, we analyze the cost-effectiveness under varying budget levels. Managerial Implications. Our work supports decision-making in health management, with the goal of achieving effective disease prevention at lower costs. Importantly, our decision model is generic and can thus be used for effective allocation of preventive care for other preventable diseases.
Abstract:Growing concerns regarding algorithmic fairness have led to a surge in methodologies to mitigate algorithmic bias. However, such methodologies largely assume that observed labels in training data are correct. This is problematic because bias in labels is pervasive across important domains, including healthcare, hiring, and content moderation. In particular, human-generated labels are prone to encoding societal biases. While the presence of labeling bias has been discussed conceptually, there is a lack of methodologies to address this problem. We propose a pruning method -- Decoupled Confident Learning (DeCoLe) -- specifically designed to mitigate label bias. After illustrating its performance on a synthetic dataset, we apply DeCoLe in the context of hate speech detection, where label bias has been recognized as an important challenge, and show that it successfully identifies biased labels and outperforms competing approaches.
Abstract:Human-AI complementarity is important when neither the algorithm nor the human yields dominant performance across all instances in a given context. Recent work that explored human-AI collaboration has considered decisions that correspond to classification tasks. However, in many important contexts where humans can benefit from AI complementarity, humans undertake course of action. In this paper, we propose a framework for a novel human-AI collaboration for selecting advantageous course of action, which we refer to as Learning Complementary Policy for Human-AI teams (\textsc{lcp-hai}). Our solution aims to exploit the human-AI complementarity to maximize decision rewards by learning both an algorithmic policy that aims to complement humans by a routing model that defers decisions to either a human or the AI to leverage the resulting complementarity. We then extend our approach to leverage opportunities and mitigate risks that arise in important contexts in practice: 1) when a team is composed of multiple humans with differential and potentially complementary abilities, 2) when the observational data includes consistent deterministic actions, and 3) when the covariate distribution of future decisions differ from that in the historical data. We demonstrate the effectiveness of our proposed methods using data on real human responses and semi-synthetic, and find that our methods offer reliable and advantageous performance across setting, and that it is superior to when either the algorithm or the AI make decisions on their own. We also find that the extensions we propose effectively improve the robustness of the human-AI collaboration performance in the presence of different challenging settings.
Abstract:Expert decision-makers (DMs) in high-stakes AI-advised (AIDeT) settings receive and reconcile recommendations from AI systems before making their final decisions. We identify distinct properties of these settings which are key to developing AIDeT models that effectively benefit team performance. First, DMs in AIDeT settings exhibit algorithm discretion behavior (ADB), i.e., an idiosyncratic tendency to imperfectly accept or reject algorithmic recommendations for any given decision task. Second, DMs incur contradiction costs from exerting decision-making resources (e.g., time and effort) when reconciling AI recommendations that contradict their own judgment. Third, the human's imperfect discretion and reconciliation costs introduce the need for the AI to offer advice selectively. We refer to the task of developing AI to advise humans in AIDeT settings as learning to advise and we address this task by first introducing the AIDeT-Learning Framework. Additionally, we argue that leveraging the human partner's ADB is key to maximizing the AIDeT's decision accuracy while regularizing for contradiction costs. Finally, we instantiate our framework to develop TeamRules (TR): an algorithm that produces rule-based models and recommendations for AIDeT settings. TR is optimized to selectively advise a human and to trade-off contradiction costs and team accuracy for a given environment by leveraging the human partner's ADB. Evaluations on synthetic and real-world benchmark datasets with a variety of simulated human accuracy and discretion behaviors show that TR robustly improves the team's objective across settings over interpretable, rule-based alternatives.
Abstract:The extensive adoption of business analytics (BA) has brought financial gains and increased efficiencies. However, these advances have simultaneously drawn attention to rising legal and ethical challenges when BA inform decisions with fairness implications. As a response to these concerns, the emerging study of algorithmic fairness deals with algorithmic outputs that may result in disparate outcomes or other forms of injustices for subgroups of the population, especially those who have been historically marginalized. Fairness is relevant on the basis of legal compliance, social responsibility, and utility; if not adequately and systematically addressed, unfair BA systems may lead to societal harms and may also threaten an organization's own survival, its competitiveness, and overall performance. This paper offers a forward-looking, BA-focused review of algorithmic fairness. We first review the state-of-the-art research on sources and measures of bias, as well as bias mitigation algorithms. We then provide a detailed discussion of the utility-fairness relationship, emphasizing that the frequent assumption of a trade-off between these two constructs is often mistaken or short-sighted. Finally, we chart a path forward by identifying opportunities for business scholars to address impactful, open challenges that are key to the effective and responsible deployment of BA.
Abstract:An increased awareness concerning risks of algorithmic bias has driven a surge of efforts around bias mitigation strategies. A vast majority of the proposed approaches fall under one of two categories: (1) imposing algorithmic fairness constraints on predictive models, and (2) collecting additional training samples. Most recently and at the intersection of these two categories, methods that propose active learning under fairness constraints have been developed. However, proposed bias mitigation strategies typically overlook the bias presented in the observed labels. In this work, we study fairness considerations of active data collection strategies in the presence of label bias. We first present an overview of different types of label bias in the context of supervised learning systems. We then empirically show that, when overlooking label bias, collecting more data can aggravate bias, and imposing fairness constraints that rely on the observed labels in the data collection process may not address the problem. Our results illustrate the unintended consequences of deploying a model that attempts to mitigate a single type of bias while neglecting others, emphasizing the importance of explicitly differentiating between the types of bias that fairness-aware algorithms aim to address, and highlighting the risks of neglecting label bias during data collection.
Abstract:Expert workers make non-trivial decisions with significant implications. Experts' decision accuracy is thus a fundamental aspect of their judgment quality, key to both management and consumers of experts' services. Yet, in many important settings, transparency in experts' decision quality is rarely possible because ground truth data for evaluating the experts' decisions is costly and available only for a limited set of decisions. Furthermore, different experts typically handle exclusive sets of decisions, and thus prior solutions that rely on the aggregation of multiple experts' decisions for the same instance are inapplicable. We first formulate the problem of estimating experts' decision accuracy in this setting and then develop a machine-learning-based framework to address it. Our method effectively leverages both abundant historical data on workers' past decisions, and scarce decision instances with ground truth information. We conduct extensive empirical evaluations of our method's performance relative to alternatives using both semi-synthetic data based on publicly available datasets, and purposefully compiled dataset on real workers' decisions. The results show that our approach is superior to existing alternatives across diverse settings, including different data domains, experts' qualities, and the amount of ground truth data. To our knowledge, this paper is the first to posit and address the problem of estimating experts' decision accuracies from historical data with scarcely available ground truth, and it is the first to offer comprehensive results for this problem setting, establishing the performances that can be achieved across settings, as well as the state-of-the-art performance on which future work can build.
Abstract:We propose a model-agnostic approach for mitigating the prediction bias of a black-box decision-maker, and in particular, a human decision-maker. Our method detects in the feature space where the black-box decision-maker is biased and replaces it with a few short decision rules, acting as a "fair surrogate". The rule-based surrogate model is trained under two objectives, predictive performance and fairness. Our model focuses on a setting that is common in practice but distinct from other literature on fairness. We only have black-box access to the model, and only a limited set of true labels can be queried under a budget constraint. We formulate a multi-objective optimization for building a surrogate model, where we simultaneously optimize for both predictive performance and bias. To train the model, we propose a novel training algorithm that combines a nondominated sorting genetic algorithm with active learning. We test our model on public datasets where we simulate various biased "black-box" classifiers (decision-makers) and apply our approach for interpretable augmented fairness.