Abstract:Recent years have witnessed substantial advancements in the field of 3D reconstruction from 2D images, particularly following the introduction of the neural radiance field (NeRF) technique. However, reconstructing a 3D high dynamic range (HDR) radiance field, which aligns more closely with real-world conditions, from 2D multi-exposure low dynamic range (LDR) images continues to pose significant challenges. Approaches to this issue fall into two categories: grid-based and implicit-based. Implicit methods, using multi-layer perceptrons (MLP), face inefficiencies, limited solvability, and overfitting risks. Conversely, grid-based methods require significant memory and struggle with image quality and long training times. In this paper, we introduce Gaussian Splatting-a recent, high-quality, real-time 3D reconstruction technique-into this domain. We further develop the High Dynamic Range Gaussian Splatting (HDR-GS) method, designed to address the aforementioned challenges. This method enhances color dimensionality by including luminance and uses an asymmetric grid for tone-mapping, swiftly and precisely converting pixel irradiance to color. Our approach improves HDR scene recovery accuracy and integrates a novel coarse-to-fine strategy to speed up model convergence, enhancing robustness against sparse viewpoints and exposure extremes, and preventing local optima. Extensive testing confirms that our method surpasses current state-of-the-art techniques in both synthetic and real-world scenarios. Code will be released at \url{https://github.com/WuJH2001/HDRGS}
Abstract:There is an increasing trend to mine vulnerabilities from software repositories and use machine learning techniques to automatically detect software vulnerabilities. A fundamental but unresolved research question is: how do different factors in the mining and learning process impact the accuracy of identifying vulnerabilities in software projects of varying characteristics? Substantial research has been dedicated in this area, including source code static analysis, software repository mining, and NLP-based machine learning. However, practitioners lack experience regarding the key factors for building a baseline model of the state-of-the-art. In addition, there lacks of experience regarding the transferability of the vulnerability signatures from project to project. This study investigates how the combination of different vulnerability features and three representative machine learning models impact the accuracy of vulnerability detection in 17 real-world projects. We examine two types of vulnerability representations: 1) code features extracted through NLP with varying tokenization strategies and three different embedding techniques (bag-of-words, word2vec, and fastText) and 2) a set of eight architectural metrics that capture the abstract design of the software systems. The three machine learning algorithms include a random forest model, a support vector machines model, and a residual neural network model. The analysis shows a recommended baseline model with signatures extracted through bag-of-words embedding, combined with the random forest, consistently increases the detection accuracy by about 4% compared to other combinations in all 17 projects. Furthermore, we observe the limitation of transferring vulnerability signatures across domains based on our experiments.
Abstract:This paper describes the BERT-based models proposed for two subtasks in SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles. We first build the model for Span Identification (SI) based on SpanBERT, and facilitate the detection by a deeper model and a sentence-level representation. We then develop a hybrid model for the Technique Classification (TC). The hybrid model is composed of three submodels including two BERT models with different training methods, and a feature-based Logistic Regression model. We endeavor to deal with imbalanced dataset by adjusting cost function. We are in the seventh place in SI subtask (0.4711 of F1-measure), and in the third place in TC subtask (0.6783 of F1-measure) on the development set.