Abstract:In this paper, we explore how to design lightweight CNN architecture for embedded computing systems. We propose L-Mobilenet model for ZYNQ based hardware platform. L-Mobilenet can adapt well to the hardware computing and accelerating, and its network structure is inspired by the state-of-the-art work of Inception-ResnetV1 and MobilenetV2, which can effectively reduce parameters and delay while maintaining the accuracy of inference. We deploy our L-Mobilenet model to ZYNQ embedded platform for fully evaluating the performance of our design. By measuring in cifar10 and cifar100 datasets, L-Mobilenet model is able to gain 3x speed up and 3.7x fewer parameters than MobileNetV2 while maintaining a similar accuracy. It also can obtain 2x speed up and 1.5x fewer parameters than ShufflenetV2 while maintaining the same accuracy. Experiments show that our network model can obtain better performance because of the special considerations for hardware accelerating and software-hardware co-design strategies in our L-Mobilenet bottleneck architecture.
Abstract:Among existing Neural Architecture Search methods, DARTS is known for its efficiency and simplicity. This approach applies continuous relaxation of network representation to construct a weight-sharing supernet and enables the identification of excellent subnets in just a few GPU days. However, performance collapse in DARTS results in deteriorating architectures filled with parameter-free operations and remains a great challenge to the robustness. To resolve this problem, we reveal that the fundamental reason is the biased estimation of the candidate importance in the search space through theoretical and experimental analysis, and more precisely select operations via information-based measurements. Furthermore, we demonstrate that the excessive concern over the supernet and inefficient utilization of data in bi-level optimization also account for suboptimal results. We adopt a more realistic objective focusing on the performance of subnets and simplify it with the help of the information-based measurements. Finally, we explain theoretically why progressively shrinking the width of the supernet is necessary and reduce the approximation error of optimal weights in DARTS. Our proposed method, named IS-DARTS, comprehensively improves DARTS and resolves the aforementioned problems. Extensive experiments on NAS-Bench-201 and DARTS-based search space demonstrate the effectiveness of IS-DARTS.