Abstract:Fourier Ptychography is a recently proposed imaging technique that yields high-resolution images by computationally transcending the diffraction blur of an optical system. At the crux of this method is the phase retrieval algorithm, which is used for computationally stitching together low-resolution images taken under varying illumination angles of a coherent light source. However, the traditional iterative phase retrieval technique relies heavily on the initialization and also need a good amount of overlap in the Fourier domain for the successively captured low-resolution images, thus increasing the acquisition time and data. We show that an auto-encoder based architecture can be adaptively trained for phase retrieval under both low overlap, where traditional techniques completely fail, and at higher levels of overlap. For the low overlap case we show that a supervised deep learning technique using an autoencoder generator is a good choice for solving the Fourier ptychography problem. And for the high overlap case, we show that optimizing the generator for reducing the forward model error is an appropriate choice. Using simulations for the challenging case of uncorrelated phase and amplitude, we show that our method outperforms many of the previously proposed Fourier ptychography phase retrieval techniques.
Abstract:Rotation invariance has been studied in the computer vision community primarily in the context of small in-plane rotations. This is usually achieved by building invariant image features. However, the problem of achieving invariance for large rotation angles remains largely unexplored. In this work, we tackle this problem by directly compensating for large rotations, as opposed to building invariant features. This is inspired by the neuro-scientific concept of mental rotation, which humans use to compare pairs of rotated objects. Our contributions here are three-fold. First, we train a Convolutional Neural Network (CNN) to detect image rotations. We find that generic CNN architectures are not suitable for this purpose. To this end, we introduce a convolutional template layer, which learns representations for canonical 'unrotated' images. Second, we use Bayesian Optimization to quickly sift through a large number of candidate images to find the canonical 'unrotated' image. Third, we use this method to achieve robustness to large angles in an image retrieval scenario. Our method is task-agnostic, and can be used as a pre-processing step in any computer vision system.
Abstract:Our work proposes a novel deep learning framework for estimating crowd density from static images of highly dense crowds. We use a combination of deep and shallow, fully convolutional networks to predict the density map for a given crowd image. Such a combination is used for effectively capturing both the high-level semantic information (face/body detectors) and the low-level features (blob detectors), that are necessary for crowd counting under large scale variations. As most crowd datasets have limited training samples (<100 images) and deep learning based approaches require large amounts of training data, we perform multi-scale data augmentation. Augmenting the training samples in such a manner helps in guiding the CNN to learn scale invariant representations. Our method is tested on the challenging UCF_CC_50 dataset, and shown to outperform the state of the art methods.