Abstract:Existing eye trackers use cameras based on thick compound optical elements, necessitating the cameras to be placed at focusing distance from the eyes. This results in the overall bulk of wearable eye trackers, especially for augmented and virtual reality (AR/VR) headsets. We overcome this limitation by building a compact flat eye gaze tracker using mask-based lensless cameras. These cameras, in combination with co-designed lightweight deep neural network algorithm, can be placed in extreme close proximity to the eye, within the eyeglasses frame, resulting in ultra-flat and lightweight eye gaze tracker system. We collect a large dataset of near-eye lensless camera measurements along with their calibrated gaze directions for training the gaze tracking network. Through real and simulation experiments, we show that the proposed gaze tracking system performs on par with conventional lens-based trackers while maintaining a significantly flatter and more compact form-factor. Moreover, our gaze regressor boasts real-time (>125 fps) performance for gaze tracking.
Abstract:Facial video editing has become increasingly important for content creators, enabling the manipulation of facial expressions and attributes. However, existing models encounter challenges such as poor editing quality, high computational costs and difficulties in preserving facial identity across diverse edits. Additionally, these models are often constrained to editing predefined facial attributes, limiting their flexibility to diverse editing prompts. To address these challenges, we propose a novel facial video editing framework that leverages the rich latent space of pre-trained text-to-image (T2I) diffusion models and fine-tune them specifically for facial video editing tasks. Our approach introduces a targeted fine-tuning scheme that enables high quality, localized, text-driven edits while ensuring identity preservation across video frames. Additionally, by using pre-trained T2I models during inference, our approach significantly reduces editing time by 80%, while maintaining temporal consistency throughout the video sequence. We evaluate the effectiveness of our approach through extensive testing across a wide range of challenging scenarios, including varying head poses, complex action sequences, and diverse facial expressions. Our method consistently outperforms existing techniques, demonstrating superior performance across a broad set of metrics and benchmarks.
Abstract:Novel view synthesis has been greatly enhanced by the development of radiance field methods. The introduction of 3D Gaussian Splatting (3DGS) has effectively addressed key challenges, such as long training times and slow rendering speeds, typically associated with Neural Radiance Fields (NeRF), while maintaining high-quality reconstructions. In this work (BeSplat), we demonstrate the recovery of sharp radiance field (Gaussian splats) from a single motion-blurred image and its corresponding event stream. Our method jointly learns the scene representation via Gaussian Splatting and recovers the camera motion through Bezier SE(3) formulation effectively, minimizing discrepancies between synthesized and real-world measurements of both blurry image and corresponding event stream. We evaluate our approach on both synthetic and real datasets, showcasing its ability to render view-consistent, sharp images from the learned radiance field and the estimated camera trajectory. To the best of our knowledge, ours is the first work to address this highly challenging ill-posed problem in a Gaussian Splatting framework with the effective incorporation of temporal information captured using the event stream.
Abstract:Traditional CMOS sensors suffer from restricted dynamic range and sub optimal performance under extreme lighting conditions. They are affected by electronic noise in low light conditions and pixel saturation while capturing high illumination. Recent High Dynamic Range (HDR) Imaging methods, often designed for CMOS Sensors, attempt to address these issues by fusing multiple exposures. However, they frequently introduce artifacts like ghosting and light flickering in dynamic scenarios and non-uniform signal-to-noise ratio in extreme dynamic range conditions. Recently, Single Photon Avalanche Diodes (SPADs), also known as Single Photon Camera (SPC) sensors, have surpassed CMOS sensors due to their capability to capture individual photons with high timing precision. Unlike traditional digital cameras that first convert light energy into analog electrical currents and then digitize them, SPAD sensors perform direct photon detection, making them less susceptible to extreme illumination conditions. Their distinctive non-linear response curve aids in capturing photons across both low-light and high-illumination environments, making them particularly effective for High Dynamic Range Imaging. Despite their advantages, images from SPAD Sensors are often noisy and visually unappealing. To address these challenges, we evaluate state-of-the-art architectures for converting monochromatic SPAD images into Color HDR images at various resolutions. Our evaluation involves both qualitative and quantitative assessments of these architectures, focusing on their effectiveness in each stage of the conversion process.
Abstract:Flare, an optical phenomenon resulting from unwanted scattering and reflections within a lens system, presents a significant challenge in imaging. The diverse patterns of flares, such as halos, streaks, color bleeding, and haze, complicate the flare removal process. Existing traditional and learning-based methods have exhibited limited efficacy due to their reliance on single-image approaches, where flare removal is highly ill-posed. We address this by framing flare removal as a multi-view image problem, taking advantage of the view-dependent nature of flare artifacts. This approach leverages information from neighboring views to recover details obscured by flare in individual images. Our proposed framework, GN-FR (Generalizable Neural Radiance Fields for Flare Removal), can render flare-free views from a sparse set of input images affected by lens flare and generalizes across different scenes in an unsupervised manner. GN-FR incorporates several modules within the Generalizable NeRF Transformer (GNT) framework: Flare-occupancy Mask Generation (FMG), View Sampler (VS), and Point Sampler (PS). To overcome the impracticality of capturing both flare-corrupted and flare-free data, we introduce a masking loss function that utilizes mask information in an unsupervised setting. Additionally, we present a 3D multi-view flare dataset, comprising 17 real flare scenes with 782 images, 80 real flare patterns, and their corresponding annotated flare-occupancy masks. To our knowledge, this is the first work to address flare removal within a Neural Radiance Fields (NeRF) framework.
Abstract:Underwater images suffer from colour shifts, low contrast, and haziness due to light absorption, refraction, scattering and restoring these images has warranted much attention. In this work, we present Unsupervised Underwater Neural Radiance Field U2NeRF, a transformer-based architecture that learns to render and restore novel views conditioned on multi-view geometry simultaneously. Due to the absence of supervision, we attempt to implicitly bake restoring capabilities onto the NeRF pipeline and disentangle the predicted color into several components - scene radiance, direct transmission map, backscatter transmission map, and global background light, and when combined reconstruct the underwater image in a self-supervised manner. In addition, we release an Underwater View Synthesis UVS dataset consisting of 12 underwater scenes, containing both synthetically-generated and real-world data. Our experiments demonstrate that when optimized on a single scene, U2NeRF outperforms several baselines by as much LPIPS 11%, UIQM 5%, UCIQE 4% (on average) and showcases improved rendering and restoration capabilities. Code will be made available upon acceptance.
Abstract:Lensless imaging offers a significant opportunity to develop ultra-compact cameras by removing the conventional bulky lens system. However, without a focusing element, the sensor's output is no longer a direct image but a complex multiplexed scene representation. Traditional methods have attempted to address this challenge by employing learnable inversions and refinement models, but these methods are primarily designed for 2D reconstruction and do not generalize well to 3D reconstruction. We introduce GANESH, a novel framework designed to enable simultaneous refinement and novel view synthesis from multi-view lensless images. Unlike existing methods that require scene-specific training, our approach supports on-the-fly inference without retraining on each scene. Moreover, our framework allows us to tune our model to specific scenes, enhancing the rendering and refinement quality. To facilitate research in this area, we also present the first multi-view lensless dataset, LenslessScenes. Extensive experiments demonstrate that our method outperforms current approaches in reconstruction accuracy and refinement quality. Code and video results are available at https://rakesh-123-cryp.github.io/Rakesh.github.io/
Abstract:The recent advent of 3D Gaussian Splatting (3DGS) has revolutionized the 3D scene reconstruction space enabling high-fidelity novel view synthesis in real-time. However, with the exception of RawNeRF, all prior 3DGS and NeRF-based methods rely on 8-bit tone-mapped Low Dynamic Range (LDR) images for scene reconstruction. Such methods struggle to achieve accurate reconstructions in scenes that require a higher dynamic range. Examples include scenes captured in nighttime or poorly lit indoor spaces having a low signal-to-noise ratio, as well as daylight scenes with shadow regions exhibiting extreme contrast. Our proposed method HDRSplat tailors 3DGS to train directly on 14-bit linear raw images in near darkness which preserves the scenes' full dynamic range and content. Our key contributions are two-fold: Firstly, we propose a linear HDR space-suited loss that effectively extracts scene information from noisy dark regions and nearly saturated bright regions simultaneously, while also handling view-dependent colors without increasing the degree of spherical harmonics. Secondly, through careful rasterization tuning, we implicitly overcome the heavy reliance and sensitivity of 3DGS on point cloud initialization. This is critical for accurate reconstruction in regions of low texture, high depth of field, and low illumination. HDRSplat is the fastest method to date that does 14-bit (HDR) 3D scene reconstruction in $\le$15 minutes/scene ($\sim$30x faster than prior state-of-the-art RawNeRF). It also boasts the fastest inference speed at $\ge$120fps. We further demonstrate the applicability of our HDR scene reconstruction by showcasing various applications like synthetic defocus, dense depth map extraction, and post-capture control of exposure, tone-mapping and view-point.
Abstract:Neural rendering methods can achieve near-photorealistic image synthesis of scenes from posed input images. However, when the images are imperfect, e.g., captured in very low-light conditions, state-of-the-art methods fail to reconstruct high-quality 3D scenes. Recent approaches have tried to address this limitation by modeling various degradation processes in the image formation model; however, this limits them to specific image degradations. In this paper, we propose a generalizable neural rendering method that can perform high-fidelity novel view synthesis under several degradations. Our method, GAURA, is learning-based and does not require any test-time scene-specific optimization. It is trained on a synthetic dataset that includes several degradation types. GAURA outperforms state-of-the-art methods on several benchmarks for low-light enhancement, dehazing, deraining, and on-par for motion deblurring. Further, our model can be efficiently fine-tuned to any new incoming degradation using minimal data. We thus demonstrate adaptation results on two unseen degradations, desnowing and removing defocus blur. Code and video results are available at vinayak-vg.github.io/GAURA.
Abstract:Dual pixels contain disparity cues arising from the defocus blur. This disparity information is useful for many vision tasks ranging from autonomous driving to 3D creative realism. However, directly estimating disparity from dual pixels is less accurate. This work hypothesizes that distilling high-precision dark stereo knowledge, implicitly or explicitly, to efficient dual-pixel student networks enables faithful reconstructions. This dark knowledge distillation should also alleviate stereo-synchronization setup and calibration costs while dramatically increasing parameter and inference time efficiency. We collect the first and largest 3-view dual-pixel video dataset, dpMV, to validate our explicit dark knowledge distillation hypothesis. We show that these methods outperform purely monocular solutions, especially in challenging foreground-background separation regions using faithful guidance from dual pixels. Finally, we demonstrate an unconventional use case unlocked by dpMV and implicit dark knowledge distillation from an ensemble of teachers for Light Field (LF) video reconstruction. Our LF video reconstruction method is the fastest and most temporally consistent to date. It remains competitive in reconstruction fidelity while offering many other essential properties like high parameter efficiency, implicit disocclusion handling, zero-shot cross-dataset transfer, geometrically consistent inference on higher spatial-angular resolutions, and adaptive baseline control. All source code is available at the anonymous repository https://github.com/Aryan-Garg.