Abstract:As the latest advancements in natural language processing, large language models (LLMs) have achieved human-level language understanding and generation abilities in many real-world tasks, and even have been regarded as a potential path to the artificial general intelligence. To better facilitate research on LLMs, many open-source LLMs, such as Llama 2 and Falcon, have recently been proposed and gained comparable performances to proprietary models. However, these models are primarily designed for English scenarios and exhibit poor performances in Chinese contexts. In this technical report, we propose YAYI 2, including both base and chat models, with 30 billion parameters. YAYI 2 is pre-trained from scratch on a multilingual corpus which contains 2.65 trillion tokens filtered by our pre-training data processing pipeline. The base model is aligned with human values through supervised fine-tuning with millions of instructions and reinforcement learning from human feedback. Extensive experiments on multiple benchmarks, such as MMLU and CMMLU, consistently demonstrate that the proposed YAYI 2 outperforms other similar sized open-source models.
Abstract:Auroral classification plays a crucial role in polar research. However, current auroral classification studies are predominantly based on images taken at a single wavelength, typically 557.7 nm. Images obtained at other wavelengths have been comparatively overlooked, and the integration of information from multiple wavelengths remains an underexplored area. This limitation results in low classification rates for complex auroral patterns. Furthermore, these studies, whether employing traditional machine learning or deep learning approaches, have not achieved a satisfactory trade-off between accuracy and speed. To address these challenges, this paper proposes a lightweight auroral multi-wavelength fusion classification network, MLCNet, based on a multi-view approach. Firstly, we develop a lightweight feature extraction backbone, called LCTNet, to improve the classification rate and cope with the increasing amount of auroral observation data. Secondly, considering the existence of multi-scale spatial structures in auroras, we design a novel multi-scale reconstructed feature module named MSRM. Finally, to highlight the discriminative information between auroral classes, we propose a lightweight attention feature enhancement module called LAFE. The proposed method is validated using observational data from the Arctic Yellow River Station during 2003-2004. Experimental results demonstrate that the fusion of multi-wavelength information effectively improves the auroral classification performance. In particular, our approach achieves state-of-the-art classification accuracy compared to previous auroral classification studies, and superior results in terms of accuracy and computational efficiency compared to existing multi-view methods.
Abstract:Facial kinship verification aims at automatically determining whether two subjects have a kinship relation. It has been widely studied from different modalities, such as faces, voices, gait, and smiling expressions. However, the potential of bio-signals, such as remote Photoplethysmography (rPPG) extracted from facial videos, remains largely unexplored in the kinship verification problem. In this paper, we investigate for the first time the usage of the rPPG signal for kinship verification. Specifically, we proposed a one-dimensional Convolutional Neural Network (1DCNN) with a 1DCNN-Attention module and contrastive loss to learn the kinship similarity from rPPGs. The network takes multiple rPPG signals extracted from various facial Regions of Interest (ROIs) as inputs. Additionally, the 1DCNN attention module is designed to learn and capture the discriminative kin features from feature embeddings. Finally, the proposed method is evaluated on the UvANEMO Smile Database from different kin relations, showing the usefulness of rPPG signals in verifying kinship.