Abstract:Voice assistants have become ubiquitous in smart devices allowing users to instantly access information via voice questions. While extensive research has been conducted in question answering for voice search, little attention has been paid on how to enable proactive recommendations from a voice assistant to its users. This is a highly challenging problem that often leads to user friction, mainly due to recommendations provided to the users at the wrong time. We focus on the domain of e-commerce, namely in identifying Shopping Product Questions (SPQs), where the user asking a product-related question may have an underlying shopping need. Identifying a user's shopping need allows voice assistants to enhance shopping experience by determining when to provide recommendations, such as product or deal recommendations, or proactive shopping actions recommendation. Identifying SPQs is a challenging problem and cannot be done from question text alone, and thus requires to infer latent user behavior patterns inferred from user's past shopping history. We propose features that capture the user's latent shopping behavior from their purchase history, and combine them using a novel Mixture-of-Experts (MoE) model. Our evaluation shows that the proposed approach is able to identify SPQs with a high score of F1=0.91. Furthermore, based on an online evaluation with real voice assistant users, we identify SPQs in real-time and recommend shopping actions to users to add the queried product into their shopping list. We demonstrate that we are able to accurately identify SPQs, as indicated by the significantly higher rate of added products to users' shopping lists when being prompted after SPQs vs random PQs.
Abstract:Virtual assistants such as Amazon's Alexa, Apple's Siri, Google Home, and Microsoft's Cortana, are becoming ubiquitous in our daily lives and successfully help users in various daily tasks, such as making phone calls or playing music. Yet, they still struggle with playful utterances, which are not meant to be interpreted literally. Examples include jokes or absurd requests or questions such as, "Are you afraid of the dark?", "Who let the dogs out?", or "Order a zillion gummy bears". Today, virtual assistants often return irrelevant answers to such utterances, except for hard-coded ones addressed by canned replies. To address the challenge of automatically detecting playful utterances, we first characterize the different types of playful human-virtual assistant interaction. We introduce a taxonomy of playful requests rooted in theories of humor and refined by analyzing real-world traffic from Alexa. We then focus on one node, personification, where users refer to the virtual assistant as a person ("What do you do for fun?"). Our conjecture is that understanding such utterances will improve user experience with virtual assistants. We conducted a Wizard-of-Oz user study and showed that endowing virtual assistant s with the ability to identify humorous opportunities indeed has the potential to increase user satisfaction. We hope this work will contribute to the understanding of the landscape of the problem and inspire novel ideas and techniques towards the vision of giving virtual assistants a sense of humor.