LaBRI
Abstract:Recent research yielded a wide array of drift detectors. However, in order to achieve remarkable performance, the true class labels must be available during the drift detection phase. This paper targets at detecting drift when the ground truth is unknown during the detection phase. To that end, we introduce Gaussian Split Detector (GSD) a novel drift detector that works in batch mode. GSD is designed to work when the data follow a normal distribution and makes use of Gaussian mixture models to monitor changes in the decision boundary. The algorithm is designed to handle multi-dimension data streams and to work without the ground truth labels during the inference phase making it pertinent for real world use. In an extensive experimental study on real and synthetic datasets, we evaluate our detector against the state of the art. We show that our detector outperforms the state of the art in detecting real drift and in ignoring virtual drift which is key to avoid false alarms.
Abstract:SAT research has a long history of source code and binary releases, thanks to competitions organized every year. However, since every cycle of competitions has its own set of rules and an adhoc way of publishing source code and binaries, compiling or even running any solver may be harder than what it seems. Moreover, there has been more than a thousand solvers published so far, some of them released in the early 90's. If the SAT community wants to archive and be able to keep track of all the solvers that made its history, it urgently needs to deploy an important effort. We propose to initiate a community-driven effort to archive and to allow easy compilation and running of all SAT solvers that have been released so far. We rely on the best tools for archiving and building binaries (thanks to Docker, GitHub and Zenodo) and provide a consistent and easy way for this. Thanks to our tool, building (or running) a solver from its source (or from its binary) can be done in one line.
Abstract:We present the first acoustic side-channel attack that recovers what users type on the virtual keyboard of their touch-screen smartphone or tablet. When a user taps the screen with a finger, the tap generates a sound wave that propagates on the screen surface and in the air. We found the device's microphone(s) can recover this wave and "hear" the finger's touch, and the wave's distortions are characteristic of the tap's location on the screen. Hence, by recording audio through the built-in microphone(s), a malicious app can infer text as the user enters it on their device. We evaluate the effectiveness of the attack with 45 participants in a real-world environment on an Android tablet and an Android smartphone. For the tablet, we recover 61% of 200 4-digit PIN-codes within 20 attempts, even if the model is not trained with the victim's data. For the smartphone, we recover 9 words of size 7--13 letters with 50 attempts in a common side-channel attack benchmark. Our results suggest that it not always sufficient to rely on isolation mechanisms such as TrustZone to protect user input. We propose and discuss hardware, operating-system and application-level mechanisms to block this attack more effectively. Mobile devices may need a richer capability model, a more user-friendly notification system for sensor usage and a more thorough evaluation of the information leaked by the underlying hardware.