Abstract:Effectively steering hearable devices requires understanding the acoustic environment around the user. In the computational analysis of sound scenes, foundation models have emerged as the state of the art to produce high-performance, robust, multi-purpose audio representations. We introduce and release Deep Evaluation of Audio Representations (DEAR), the first dataset and benchmark to evaluate the efficacy of foundation models in capturing essential acoustic properties for hearables. The dataset includes 1,158 audio tracks, each 30 seconds long, created by spatially mixing proprietary monologues with commercial, high-quality recordings of everyday acoustic scenes. Our benchmark encompasses eight tasks that assess the general context, speech sources, and technical acoustic properties of the audio scenes. Through our evaluation of four general-purpose audio representation models, we demonstrate that the BEATs model significantly surpasses its counterparts. This superiority underscores the advantage of models trained on diverse audio collections, confirming their applicability to a wide array of auditory tasks, including encoding the environment properties necessary for hearable steering. The DEAR dataset and associated code are available at https://dear-dataset.github.io.
Abstract:Real-time bioaerosol monitoring is improving the quality of life for people affected by allergies, but it often relies on deep-learning models which pose challenges for widespread adoption. These models are typically trained in a supervised fashion and require considerable effort to produce large amounts of annotated data, an effort that must be repeated for new particles, geographical regions, or measurement systems. In this work, we show that self-supervised learning and few-shot learning can be combined to classify holographic images of bioaerosol particles using a large collection of unlabelled data and only a few examples for each particle type. We first demonstrate that self-supervision on pictures of unidentified particles from ambient air measurements enhances identification even when labelled data is abundant. Most importantly, it greatly improves few-shot classification when only a handful of labelled images are available. Our findings suggest that real-time bioaerosol monitoring workflows can be substantially optimized, and the effort required to adapt models for different situations considerably reduced.