Abstract:One of the most critical tasks of Microsoft sellers is to meticulously track and nurture potential business opportunities through proactive engagement and tailored solutions. Recommender systems play a central role to help sellers achieve their goals. In this paper, we present a content recommendation model which surfaces various types of content (technical documentation, comparison with competitor products, customer success stories etc.) that sellers can share with their customers or use for their own self-learning. The model operates at the opportunity level which is the lowest possible granularity and the most relevant one for sellers. It is based on semantic matching between metadata from the contents and carefully selected attributes of the opportunities. Considering the volume of seller-managed opportunities in organizations such as Microsoft, we show how to perform efficient semantic matching over a very large number of opportunity-content combinations. The main challenge is to ensure that the top-5 relevant contents for each opportunity are recommended out of a total of $\approx 40,000$ published contents. We achieve this target through an extensive comparison of different model architectures and feature selection. Finally, we further examine the quality of the recommendations in a quantitative manner using a combination of human domain experts as well as by using the recently proposed "LLM as a judge" framework.
Abstract:In this paper, we design a real-time question-answering system specifically targeted for helping sellers get relevant material/documentation they can share live with their customers or refer to during a call. Taking the Seismic content repository as a relatively large scale example of a diverse dataset of sales material, we demonstrate how LLM embeddings of sellers' queries can be matched with the relevant content. We achieve this by engineering prompts in an elaborate fashion that makes use of the rich set of meta-features available for documents and sellers. Using a bi-encoder with cross-encoder re-ranker architecture, we show how the solution returns the most relevant content recommendations in just a few seconds even for large datasets. Our recommender system is deployed as an AML endpoint for real-time inferencing and has been integrated into a Copilot interface that is now deployed in the production version of the Dynamics CRM, known as MSX, used daily by Microsoft sellers.
Abstract:String matching algorithms in the presence of abbreviations, such as in Stock Keeping Unit (SKU) product catalogs, remains a relatively unexplored topic. In this paper, we present a unified architecture for SKU search that provides both a real-time suggestion system (based on a Trie data structure) as well as a lower latency search system (making use of character level TF-IDF in combination with language model vector embeddings) where users initiate the search process explicitly. We carry out ablation studies that justify designing a complex search system composed of multiple components to address the delicate trade-off between speed and accuracy. Using SKU search in the Dynamics CRM as an example, we show how our system vastly outperforms, in all aspects, the results provided by the default search engine. Finally, we show how SKU descriptions may be enhanced via generative text models (using gpt-3.5-turbo) so that the consumers of the search results may get more context and a generally better experience when presented with the results of their SKU search.
Abstract:Azure Cognitive Search (ACS) has emerged as a major contender in "Search as a Service" cloud products in recent years. However, one of the major challenges for ACS users is to improve the relevance of the search results for their specific usecases. In this paper, we propose a novel method to find the optimal ACS configuration that maximizes search relevance for a specific usecase (product search, document search...) The proposed solution improves key online marketplace metrics such as click through rates (CTR) by formulating the search relevance problem as hyperparameter tuning. We have observed significant improvements in real-world search call to action (CTA) rate in multiple marketplaces by introducing optimized weights generated from the proposed approach.
Abstract:Typographical errors are a major source of frustration for visitors of online marketplaces. Because of the domain-specific nature of these marketplaces and the very short queries users tend to search for, traditional spell cheking solutions do not perform well in correcting typos. We present a data augmentation method to address the lack of annotated typo data and train a recurrent neural network to learn context-limited domain-specific embeddings. Those embeddings are deployed in a real-time inferencing API for the Microsoft AppSource marketplace to find the closest match between a misspelled user query and the available product names. Our data efficient solution shows that controlled high quality synthetic data may be a powerful tool especially considering the current climate of large language models which rely on prohibitively huge and often uncontrolled datasets.
Abstract:Dependency hell is a well-known pain point in the development of large software projects and machine learning (ML) code bases are not immune from it. In fact, ML applications suffer from an additional form, namely, "data source dependency hell". This term refers to the central role played by data and its unique quirks that often lead to unexpected failures of ML models which cannot be explained by code changes. In this paper, we present an automated dependency mapping framework that allows MLOps engineers to monitor the whole dependency map of their models in a fast paced engineering environment and thus mitigate ahead of time the consequences of any data source changes (e.g., re-train model, ignore data, set default data etc.). Our system is based on a unified and generic approach, employing techniques from static analysis, from which data sources can be identified reliably for any type of dependency on a wide range of source languages and artefacts. The dependency mapping framework is exposed as a REST web API where the only input is the path to the Git repository hosting the code base. Currently used by MLOps engineers at Microsoft, we expect such dependency map APIs to be adopted more widely by MLOps engineers in the future.
Abstract:We show how any dataset of any modality (time-series, images, sound...) can be approximated by a well-behaved (continuous, differentiable...) scalar function with a single real-valued parameter. Building upon elementary concepts from chaos theory, we adopt a pedagogical approach demonstrating how to adjust this parameter in order to achieve arbitrary precision fit to all samples of the data. Targeting an audience of data scientists with a taste for the curious and unusual, the results presented here expand on previous similar observations regarding expressiveness power and generalization of machine learning models.
Abstract:The goal of this document is to provide a pedagogical introduction to the main concepts underpinning the training of deep neural networks using gradient descent; a process known as backpropagation. Although we focus on a very influential class of architectures called "convolutional neural networks" (CNNs) the approach is generic and useful to the machine learning community as a whole. Motivated by the observation that derivations of backpropagation are often obscured by clumsy index-heavy narratives that appear somewhat mathemagical, we aim to offer a conceptually clear, vectorized description that articulates well the higher level logic. Following the principle of "writing is nature's way of letting you know how sloppy your thinking is", we try to make the calculations meticulous, self-contained and yet as intuitive as possible. Taking nothing for granted, ample illustrations serve as visual guides and an extensive bibliography is provided for further explorations. (For the sake of clarity, long mathematical derivations and visualizations have been broken up into short "summarized views" and longer "detailed views" encoded into the PDF as optional content groups. Some figures contain animations designed to illustrate important concepts in a more engaging style. For these reasons, we advise to download the document locally and open it using Adobe Acrobat Reader. Other viewers were not tested and may not render the detailed views, animations correctly.)