Abstract:One of the most critical tasks of Microsoft sellers is to meticulously track and nurture potential business opportunities through proactive engagement and tailored solutions. Recommender systems play a central role to help sellers achieve their goals. In this paper, we present a content recommendation model which surfaces various types of content (technical documentation, comparison with competitor products, customer success stories etc.) that sellers can share with their customers or use for their own self-learning. The model operates at the opportunity level which is the lowest possible granularity and the most relevant one for sellers. It is based on semantic matching between metadata from the contents and carefully selected attributes of the opportunities. Considering the volume of seller-managed opportunities in organizations such as Microsoft, we show how to perform efficient semantic matching over a very large number of opportunity-content combinations. The main challenge is to ensure that the top-5 relevant contents for each opportunity are recommended out of a total of $\approx 40,000$ published contents. We achieve this target through an extensive comparison of different model architectures and feature selection. Finally, we further examine the quality of the recommendations in a quantitative manner using a combination of human domain experts as well as by using the recently proposed "LLM as a judge" framework.
Abstract:In this paper, we design a real-time question-answering system specifically targeted for helping sellers get relevant material/documentation they can share live with their customers or refer to during a call. Taking the Seismic content repository as a relatively large scale example of a diverse dataset of sales material, we demonstrate how LLM embeddings of sellers' queries can be matched with the relevant content. We achieve this by engineering prompts in an elaborate fashion that makes use of the rich set of meta-features available for documents and sellers. Using a bi-encoder with cross-encoder re-ranker architecture, we show how the solution returns the most relevant content recommendations in just a few seconds even for large datasets. Our recommender system is deployed as an AML endpoint for real-time inferencing and has been integrated into a Copilot interface that is now deployed in the production version of the Dynamics CRM, known as MSX, used daily by Microsoft sellers.