Abstract:Privacy preservation has long been a concern in smart acoustic monitoring systems, where speech can be passively recorded along with a target signal in the system's operating environment. In this study, we propose the integration of two commonly used approaches in privacy preservation: source separation and adversarial representation learning. The proposed system learns the latent representation of audio recordings such that it prevents differentiating between speech and non-speech recordings. Initially, the source separation network filters out some of the privacy-sensitive data, and during the adversarial learning process, the system will learn privacy-preserving representation on the filtered signal. We demonstrate the effectiveness of our proposed method by comparing our method against systems without source separation, without adversarial learning, and without both. Overall, our results suggest that the proposed system can significantly improve speech privacy preservation compared to that of using source separation or adversarial learning solely while maintaining good performance in the acoustic monitoring task.
Abstract:Sound event detection systems are widely used in various applications such as surveillance and environmental monitoring where data is automatically collected, processed, and sent to a cloud for sound recognition. However, this process may inadvertently reveal sensitive information about users or their surroundings, hence raising privacy concerns. In this study, we propose a novel adversarial training method for learning representations of audio recordings that effectively prevents the detection of speech activity from the latent features of the recordings. The proposed method trains a model to generate invariant latent representations of speech-containing audio recordings that cannot be distinguished from non-speech recordings by a speech classifier. The novelty of our work is in the optimization algorithm, where the speech classifier's weights are regularly replaced with the weights of classifiers trained in a supervised manner. This increases the discrimination power of the speech classifier constantly during the adversarial training, motivating the model to generate latent representations in which speech is not distinguishable, even using new speech classifiers trained outside the adversarial training loop. The proposed method is evaluated against a baseline approach with no privacy measures and a prior adversarial training method, demonstrating a significant reduction in privacy violations compared to the baseline approach. Additionally, we show that the prior adversarial method is practically ineffective for this purpose.
Abstract:Automatic estimation of domestic activities from audio can be used to solve many problems, such as reducing the labor cost for nursing the elderly people. This study focuses on solving the problem of domestic activity clustering from audio. The target of domestic activity clustering is to cluster audio clips which belong to the same category of domestic activity into one cluster in an unsupervised way. In this paper, we propose a method of domestic activity clustering using a depthwise separable convolutional autoencoder network. In the proposed method, initial embeddings are learned by the depthwise separable convolutional autoencoder, and a clustering-oriented loss is designed to jointly optimize embedding refinement and cluster assignment. Different methods are evaluated on a public dataset (a derivative of the SINS dataset) used in the challenge on Detection and Classification of Acoustic Scenes and Events (DCASE) in 2018. Our method obtains the normalized mutual information (NMI) score of 54.46%, and the clustering accuracy (CA) score of 63.64%, and outperforms state-of-the-art methods in terms of NMI and CA. In addition, both computational complexity and memory requirement of our method is lower than that of previous deep-model-based methods. Codes: https://github.com/vinceasvp/domestic-activity-clustering-from-audio
Abstract:Audio question answering (AQA) is a multimodal translation task where a system analyzes an audio signal and a natural language question, to generate a desirable natural language answer. In this paper, we introduce Clotho-AQA, a dataset for Audio question answering consisting of 1991 audio files each between 15 to 30 seconds in duration selected from the Clotho dataset [1]. For each audio file, we collect six different questions and corresponding answers by crowdsourcing using Amazon Mechanical Turk. The questions and answers are produced by different annotators. Out of the six questions for each audio, two questions each are designed to have 'yes' and 'no' as answers, while the remaining two questions have other single-word answers. For each question, we collect answers from three different annotators. We also present two baseline experiments to describe the usage of our dataset for the AQA task - an LSTM-based multimodal binary classifier for 'yes' or 'no' type answers and an LSTM-based multimodal multi-class classifier for 828 single-word answers. The binary classifier achieved an accuracy of 62.7% and the multi-class classifier achieved a top-1 accuracy of 54.2% and a top-5 accuracy of 93.7%. Clotho-AQA dataset is freely available online at https://zenodo.org/record/6473207.
Abstract:Automated audio captioning (AAC) is the task of automatically generating textual descriptions for general audio signals. A captioning system has to identify various information from the input signal and express it with natural language. Existing works mainly focus on investigating new methods and try to improve their performance measured on existing datasets. Having attracted attention only recently, very few works on AAC study the performance of existing pre-trained audio and natural language processing resources. In this paper, we evaluate the performance of off-the-shelf models with a Transformer-based captioning approach. We utilize the freely available Clotho dataset to compare four different pre-trained machine listening models, four word embedding models, and their combinations in many different settings. Our evaluation suggests that YAMNet combined with BERT embeddings produces the best captions. Moreover, in general, fine-tuning pre-trained word embeddings can lead to better performance. Finally, we show that sequences of audio embeddings can be processed using a Transformer encoder to produce higher-quality captions.
Abstract:We investigate unsupervised learning of correspondences between sound events and textual phrases through aligning audio clips with textual captions describing the content of a whole audio clip. We align originally unaligned and unannotated audio clips and their captions by scoring the similarities between audio frames and words, as encoded by modality-specific encoders and using a ranking-loss criterion to optimize the model. After training, we obtain clip-caption similarity by averaging frame-word similarities and estimate event-phrase correspondences by calculating frame-phrase similarities. We evaluate the method with two cross-modal tasks: audio-caption retrieval, and phrase-based sound event detection (SED). Experimental results show that the proposed method can globally associate audio clips with captions as well as locally learn correspondences between individual sound events and textual phrases in an unsupervised manner.
Abstract:Underspecification and fairness in machine learning (ML) applications have recently become two prominent issues in the ML community. Acoustic scene classification (ASC) applications have so far remained unaffected by this discussion, but are now becoming increasingly used in real-world systems where fairness and reliability are critical aspects. In this work, we argue for the need of a more holistic evaluation process for ASC models through disaggregated evaluations. This entails taking into account performance differences across several factors, such as city, location, and recording device. Although these factors play a well-understood role in the performance of ASC models, most works report single evaluation metrics taking into account all different strata of a particular dataset. We argue that metrics computed on specific sub-populations of the underlying data contain valuable information about the expected real-world behaviour of proposed systems, and their reporting could improve the transparency and trustability of such systems. We demonstrate the effectiveness of the proposed evaluation process in uncovering underspecification and fairness problems exhibited by several standard ML architectures when trained on two widely-used ASC datasets. Our evaluation shows that all examined architectures exhibit large biases across all factors taken into consideration, and in particular with respect to the recording location. Additionally, different architectures exhibit different biases even though they are trained with the same experimental configurations.
Abstract:Joint sound event localization and detection (SELD) is an emerging audio signal processing task adding spatial dimensions to acoustic scene analysis and sound event detection. A popular approach to modeling SELD jointly is using convolutional recurrent neural network (CRNN) models, where CNNs learn high-level features from multi-channel audio input and the RNNs learn temporal relationships from these high-level features. However, RNNs have some drawbacks, such as a limited capability to model long temporal dependencies and slow training and inference times due to their sequential processing nature. Recently, a few SELD studies used multi-head self-attention (MHSA), among other innovations in their models. MHSA and the related transformer networks have shown state-of-the-art performance in various domains. While they can model long temporal dependencies, they can also be parallelized efficiently. In this paper, we study in detail the effect of MHSA on the SELD task. Specifically, we examined the effects of replacing the RNN blocks with self-attention layers. We studied the influence of stacking multiple self-attention blocks, using multiple attention heads in each self-attention block, and the effect of position embeddings and layer normalization. Evaluation on the DCASE 2021 SELD (task 3) development data set shows a significant improvement in all employed metrics compared to the baseline CRNN accompanying the task.
Abstract:Automated audio captioning (AAC) is the task of automatically creating textual descriptions (i.e. captions) for the contents of a general audio signal. Most AAC methods are using existing datasets to optimize and/or evaluate upon. Given the limited information held by the AAC datasets, it is very likely that AAC methods learn only the information contained in the utilized datasets. In this paper we present a first approach for continuously adapting an AAC method to new information, using a continual learning method. In our scenario, a pre-optimized AAC method is used for some unseen general audio signals and can update its parameters in order to adapt to the new information, given a new reference caption. We evaluate our method using a freely available, pre-optimized AAC method and two freely available AAC datasets. We compare our proposed method with three scenarios, two of training on one of the datasets and evaluating on the other and a third of training on one dataset and fine-tuning on the other. Obtained results show that our method achieves a good balance between distilling new knowledge and not forgetting the previous one.
Abstract:Researchers have recently started to study how the emotional speech heard by young infants can affect their developmental outcomes. As a part of this research, hundreds of hours of daylong recordings from preterm infants' audio environments were collected from two hospitals in Finland and Estonia in the context of so-called APPLE study. In order to analyze the emotional content of speech in such a massive dataset, an automatic speech emotion recognition (SER) system is required. However, there are no emotion labels or existing indomain SER systems to be used for this purpose. In this paper, we introduce this initially unannotated large-scale real-world audio dataset and describe the development of a functional SER system for the Finnish subset of the data. We explore the effectiveness of alternative state-of-the-art techniques to deploy a SER system to a new domain, comparing cross-corpus generalization, WGAN-based domain adaptation, and active learning in the task. As a result, we show that the best-performing models are able to achieve a classification performance of 73.4% unweighted average recall (UAR) and 73.2% UAR for a binary classification for valence and arousal, respectively. The results also show that active learning achieves the most consistent performance compared to the two alternatives.