Abstract:We address the problem of predicting when a disease will develop, i.e., medical event time (MET), from a patient's electronic health record (EHR). The MET of non-communicable diseases like diabetes is highly correlated to cumulative health conditions, more specifically, how much time the patient spent with specific health conditions in the past. The common time-series representation is indirect in extracting such information from EHR because it focuses on detailed dependencies between values in successive observations, not cumulative information. We propose a novel data representation for EHR called cumulative stay-time representation (CTR), which directly models such cumulative health conditions. We derive a trainable construction of CTR based on neural networks that has the flexibility to fit the target data and scalability to handle high-dimensional EHR. Numerical experiments using synthetic and real-world datasets demonstrate that CTR alone achieves a high prediction performance, and it enhances the performance of existing models when combined with them.
Abstract:We are interested in in silico evaluation methodology for molecular optimization methods. Given a sample of molecules and their properties of our interest, we wish not only to train an agent that can find molecules optimized with respect to the target property but also to evaluate its performance. A common practice is to train a predictor of the target property on the sample and use it for both training and evaluating the agent. We show that this evaluator potentially suffers from two biases; one is due to misspecification of the predictor and the other to reusing the same sample for training and evaluation. We discuss bias reduction methods for each of the biases comprehensively, and empirically investigate their effectiveness.
Abstract:We are concerned with the problem of hyperparameter selection of offline policy evaluation (OPE). OPE is a key component of offline reinforcement learning, which is a core technology for data-driven decision optimization without environment simulators. However, the current state-of-the-art OPE methods are not hyperparameter-free, which undermines their utility in real-life applications. We address this issue by introducing a new approximate hyperparameter selection (AHS) framework for OPE, which defines a notion of optimality (called selection criteria) in a quantitative and interpretable manner without hyperparameters. We then derive four AHS methods each of which has different characteristics such as convergence rate and time complexity. Finally, we verify effectiveness and limitation of these methods with a preliminary experiment.
Abstract:We present a new generalization error bound, the \emph{PAC-Bayesian transportation bound}, unifying the PAC-Bayesian analysis and the generic chaining method in view of the optimal transportation. The proposed bound is the first PAC-Bayesian framework that characterizes the cost of de-randomization of stochastic predictors facing any Lipschitz loss functions. As an example, we give an upper bound on the de-randomization cost of spectrally normalized neural networks~(NNs) to evaluate how much randomness contributes to the generalization of NNs.
Abstract:We develop a new theoretical framework, the \emph{envelope complexity}, to analyze the minimax regret with logarithmic loss functions and derive a Bayesian predictor that adaptively achieves the minimax regret over high-dimensional $\ell_1$-balls within a factor of two. The prior is newly derived for achieving the minimax regret and called the \emph{spike-and-tails~(ST) prior} as it looks like. The resulting regret bound is so simple that it is completely determined with the smoothness of the loss function and the radius of the balls except with logarithmic factors, and it has a generalized form of existing regret/risk bounds. In the preliminary experiment, we confirm that the ST prior outperforms the conventional minimax-regret prior under non-high-dimensional asymptotics.
Abstract:We tackle the problem of penalty selection of regularization on the basis of the minimum description length (MDL) principle. In particular, we consider that the design space of the penalty function is high-dimensional. In this situation, the luckiness-normalized-maximum-likelihood(LNML)-minimization approach is favorable, because LNML quantifies the goodness of regularized models with any forms of penalty functions in view of the minimum description length principle, and guides us to a good penalty function through the high-dimensional space. However, the minimization of LNML entails two major challenges: 1) the computation of the normalizing factor of LNML and 2) its minimization in high-dimensional spaces. In this paper, we present a novel regularization selection method (MDL-RS), in which a tight upper bound of LNML (uLNML) is minimized with local convergence guarantee. Our main contribution is the derivation of uLNML, which is a uniform-gap upper bound of LNML in an analytic expression. This solves the above challenges in an approximate manner because it allows us to accurately approximate LNML and then efficiently minimize it. The experimental results show that MDL-RS improves the generalization performance of regularized estimates specifically when the model has redundant parameters.