Abstract:Designing effective two-sided matching mechanisms is a major problem in mechanism design, and the goodness of matching cannot always be formulated. The existing work addresses this issue by searching over a parameterized family of mechanisms with certain properties by learning to fit a human-crafted dataset containing examples of preference profiles and matching results. However, this approach does not consider a strategy-proof mechanism, implicitly assumes the number of agents to be a constant, and does not consider the public contextual information of the agents. In this paper, we propose a new parametric family of strategy-proof matching mechanisms by extending the serial dictatorship (SD). We develop a novel attention-based neural network called NeuralSD, which can learn a strategy-proof mechanism from a human-crafted dataset containing public contextual information. NeuralSD is constructed by tensor operations that make SD differentiable and learns a parameterized mechanism by estimating an order of SD from the contextual information. We conducted experiments to learn a strategy-proof matching from matching examples with different numbers of agents. We demonstrated that our method shows the superiority of learning with context-awareness over a baseline in terms of regression performance and other metrics.
Abstract:The fair allocation of indivisible resources is a fundamental problem. Existing research has developed various allocation mechanisms or algorithms to satisfy different fairness notions. For example, round robin (RR) was proposed to meet the fairness criterion known as envy-freeness up to one good (EF1). Expert algorithms without mathematical formulations are used in real-world resource allocation problems to find preferable outcomes for users. Therefore, we aim to design mechanisms that strictly satisfy good properties with replicating expert knowledge. However, this problem is challenging because such heuristic rules are often difficult to formalize mathematically, complicating their integration into theoretical frameworks. Additionally, formal algorithms struggle to find preferable outcomes, and directly replicating these implicit rules can result in unfair allocations because human decision-making can introduce biases. In this paper, we aim to learn implicit allocation mechanisms from examples while strictly satisfying fairness constraints, specifically focusing on learning EF1 allocation mechanisms through supervised learning on examples of reported valuations and corresponding allocation outcomes produced by implicit rules. To address this, we developed a neural RR (NRR), a novel neural network that parameterizes RR. NRR is built from a differentiable relaxation of RR and can be trained to learn the agent ordering used for RR. We conducted experiments to learn EF1 allocation mechanisms from examples, demonstrating that our method outperforms baselines in terms of the proximity of predicted allocations and other metrics.
Abstract:Question answering (QA) tasks have been extensively studied in the field of natural language processing (NLP). Answers to open-ended questions are highly diverse and difficult to quantify, and cannot be simply evaluated as correct or incorrect, unlike close-ended questions with definitive answers. While large language models (LLMs) have demonstrated strong capabilities across various tasks, they exhibit relatively weaker performance in evaluating answers to open-ended questions. In this study, we propose a method that leverages LLMs and the analytic hierarchy process (AHP) to assess answers to open-ended questions. We utilized LLMs to generate multiple evaluation criteria for a question. Subsequently, answers were subjected to pairwise comparisons under each criterion with LLMs, and scores for each answer were calculated in the AHP. We conducted experiments on four datasets using both ChatGPT-3.5-turbo and GPT-4. Our results indicate that our approach more closely aligns with human judgment compared to the four baselines. Additionally, we explored the impact of the number of criteria, variations in models, and differences in datasets on the results.
Abstract:Deep learning models have performed well on many NLP tasks. However, their internal mechanisms are typically difficult for humans to understand. The development of methods to explain models has become a key issue in the reliability of deep learning models in many important applications. Various saliency explanation methods, which give each feature of input a score proportional to the contribution of output, have been proposed to determine the part of the input which a model values most. Despite a considerable body of work on the evaluation of saliency methods, whether the results of various evaluation metrics agree with human cognition remains an open question. In this study, we propose a new human-based method to evaluate saliency methods in NLP by crowdsourcing. We recruited 800 crowd workers and empirically evaluated seven saliency methods on two datasets with the proposed method. We analyzed the performance of saliency methods, compared our results with existing automated evaluation methods, and identified notable differences between NLP and computer vision (CV) fields when using saliency methods. The instance-level data of our crowdsourced experiments and the code to reproduce the explanations are available at https://github.com/xtlu/lreccoling_evaluation.
Abstract:Treatment effect estimation can assist in effective decision-making in e-commerce, medicine, and education. One popular application of this estimation lies in the prediction of the impact of a treatment (e.g., a promotion) on an outcome (e.g., sales) of a particular unit (e.g., an item), known as the individual treatment effect (ITE). In many online applications, the outcome of a unit can be affected by the treatments of other units, as units are often associated, which is referred to as interference. For example, on an online shopping website, sales of an item will be influenced by an advertisement of its co-purchased item. Prior studies have attempted to model interference to estimate the ITE accurately, but they often assume a homogeneous interference, i.e., relationships between units only have a single view. However, in real-world applications, interference may be heterogeneous, with multi-view relationships. For instance, the sale of an item is usually affected by the treatment of its co-purchased and co-viewed items. We hypothesize that ITE estimation will be inaccurate if this heterogeneous interference is not properly modeled. Therefore, we propose a novel approach to model heterogeneous interference by developing a new architecture to aggregate information from diverse neighbors. Our proposed method contains graph neural networks that aggregate same-view information, a mechanism that aggregates information from different views, and attention mechanisms. In our experiments on multiple datasets with heterogeneous interference, the proposed method significantly outperforms existing methods for ITE estimation, confirming the importance of modeling heterogeneous interference.
Abstract:The aggregation of multiple opinions plays a crucial role in decision-making, such as in hiring and loan review, and in labeling data for supervised learning. Although majority voting and existing opinion aggregation models are effective for simple tasks, they are inappropriate for tasks without objectively true labels in which disagreements may occur. In particular, when voter attributes such as gender or race introduce bias into opinions, the aggregation results may vary depending on the composition of voter attributes. A balanced group of voters is desirable for fair aggregation results but may be difficult to prepare. In this study, we consider methods to achieve fair opinion aggregation based on voter attributes and evaluate the fairness of the aggregated results. To this end, we consider an approach that combines opinion aggregation models such as majority voting and the Dawid and Skene model (D&S model) with fairness options such as sample weighting. To evaluate the fairness of opinion aggregation, probabilistic soft labels are preferred over discrete class labels. First, we address the problem of soft label estimation without considering voter attributes and identify some issues with the D&S model. To address these limitations, we propose a new Soft D&S model with improved accuracy in estimating soft labels. Moreover, we evaluated the fairness of an opinion aggregation model, including Soft D&S, in combination with different fairness options using synthetic and semi-synthetic data. The experimental results suggest that the combination of Soft D&S and data splitting as a fairness option is effective for dense data, whereas weighted majority voting is effective for sparse data. These findings should prove particularly valuable in supporting decision-making by human and machine-learning models with balanced opinion aggregation.
Abstract:Crowdsourcing has been widely used to efficiently obtain labeled datasets for supervised learning from large numbers of human resources at low cost. However, one of the technical challenges in obtaining high-quality results from crowdsourcing is dealing with the variability and bias caused by the fact that it is humans execute the work, and various studies have addressed this issue to improve the quality by integrating redundantly collected responses. In this study, we focus on the observation bias in crowdsourcing. Variations in the frequency of worker responses and the complexity of tasks occur, which may affect the aggregation results when they are correlated with the quality of the responses. We also propose statistical aggregation methods for crowdsourcing responses that are combined with an observational data bias removal method used in causal inference. Through experiments using both synthetic and real datasets with/without artificially injected spam and colluding workers, we verify that the proposed method improves the aggregation accuracy in the presence of strong observation biases and robustness to both spam and colluding workers.
Abstract:Crowdsourcing has been used to collect data at scale in numerous fields. Triplet similarity comparison is a type of crowdsourcing task, in which crowd workers are asked the question ``among three given objects, which two are more similar?'', which is relatively easy for humans to answer. However, the comparison can be sometimes based on multiple views, i.e., different independent attributes such as color and shape. Each view may lead to different results for the same three objects. Although an algorithm was proposed in prior work to produce multiview embeddings, it involves at least two problems: (1) the existing algorithm cannot independently predict multiview embeddings for a new sample, and (2) different people may prefer different views. In this study, we propose an end-to-end inductive deep learning framework to solve the multiview representation learning problem. The results show that our proposed method can obtain multiview embeddings of any object, in which each view corresponds to an independent attribute of the object. We collected two datasets from a crowdsourcing platform to experimentally investigate the performance of our proposed approach compared to conventional baseline methods.
Abstract:Evaluation of intervention in a multi-agent system, e.g., when humans should intervene in autonomous driving systems and when a player should pass to teammates for a good shot, is challenging in various engineering and scientific fields. Estimating the individual treatment effect (ITE) using counterfactual long-term prediction is practical to evaluate such interventions. However, most of the conventional frameworks did not consider the time-varying complex structure of multi-agent relationships and covariate counterfactual prediction. This may sometimes lead to erroneous assessments of ITE and interpretation problems. Here we propose an interpretable, counterfactual recurrent network in multi-agent systems to estimate the effect of the intervention. Our model leverages graph variational recurrent neural networks and theory-based computation with domain knowledge for the ITE estimation framework based on long-term prediction of multi-agent covariates and outcomes, which can confirm under the circumstances under which the intervention is effective. On simulated models of an automated vehicle and biological agents with time-varying confounders, we show that our methods achieved lower estimation errors in counterfactual covariates and the most effective treatment timing than the baselines. Furthermore, using real basketball data, our methods performed realistic counterfactual predictions and evaluated the counterfactual passes in shot scenarios.
Abstract:Intelligent Tutoring Systems have become critically important in future learning environments. Knowledge Tracing (KT) is a crucial part of that system. It is about inferring the skill mastery of students and predicting their performance to adjust the curriculum accordingly. Deep Learning-based KT models have shown significant predictive performance compared with traditional models. However, it is difficult to extract psychologically meaningful explanations from the tens of thousands of parameters in neural networks, that would relate to cognitive theory. There are several ways to achieve high accuracy in student performance prediction but diagnostic and prognostic reasoning is more critical in learning sciences. Since KT problem has few observable features (problem ID and student's correctness at each practice), we extract meaningful latent features from students' response data by using machine learning and data mining techniques. In this work, we present Interpretable Knowledge Tracing (IKT), a simple model that relies on three meaningful latent features: individual skill mastery, ability profile (learning transfer across skills), and problem difficulty. IKT's prediction of future student performance is made using a Tree-Augmented Naive Bayes Classifier (TAN), therefore its predictions are easier to explain than deep learning-based student models. IKT also shows better student performance prediction than deep learning-based student models without requiring a huge amount of parameters. We conduct ablation studies on each feature to examine their contribution to student performance prediction. Thus, IKT has great potential for providing adaptive and personalized instructions with causal reasoning in real-world educational systems.