Abstract:Deep neural networks have proven to be extremely powerful, however, they are also vulnerable to adversarial attacks which can cause hazardous incorrect predictions in safety-critical applications. Certified robustness via randomized smoothing gives a probabilistic guarantee that the smoothed classifier's predictions will not change within an $\ell_2$-ball around a given input. On the other hand (uncertainty) score-based rejection is a technique often applied in practice to defend models against adversarial attacks. In this work, we fuse these two approaches by integrating a classifier that abstains from predicting when uncertainty is high into the certified robustness framework. This allows us to derive two novel robustness guarantees for uncertainty aware classifiers, namely (i) the radius of an $\ell_2$-ball around the input in which the same label is predicted and uncertainty remains low and (ii) the $\ell_2$-radius of a ball in which the predictions will either not change or be uncertain. While the former provides robustness guarantees with respect to attacks aiming at increased uncertainty, the latter informs about the amount of input perturbation necessary to lead the uncertainty aware model into a wrong prediction. Notably, this is on CIFAR10 up to 20.93% larger than for models not allowing for uncertainty based rejection. We demonstrate, that the novel framework allows for a systematic robustness evaluation of different network architectures and uncertainty measures and to identify desired properties of uncertainty quantification techniques. Moreover, we show that leveraging uncertainty in a smoothed classifier helps out-of-distribution detection.
Abstract:Deep neural networks have demonstrated remarkable effectiveness across a wide range of tasks such as semantic segmentation. Nevertheless, these networks are vulnerable to adversarial attacks that add imperceptible perturbations to the input image, leading to false predictions. This vulnerability is particularly dangerous in safety-critical applications like automated driving. While adversarial examples and defense strategies are well-researched in the context of image classification, there is comparatively less research focused on semantic segmentation. Recently, we have proposed an uncertainty-based method for detecting adversarial attacks on neural networks for semantic segmentation. We observed that uncertainty, as measured by the entropy of the output distribution, behaves differently on clean versus adversely perturbed images, and we utilize this property to differentiate between the two. In this extended version of our work, we conduct a detailed analysis of uncertainty-based detection of adversarial attacks including a diverse set of adversarial attacks and various state-of-the-art neural networks. Our numerical experiments show the effectiveness of the proposed uncertainty-based detection method, which is lightweight and operates as a post-processing step, i.e., no model modifications or knowledge of the adversarial example generation process are required.
Abstract:Convolutional neural networks (CNNs) for image processing tend to focus on localized texture patterns, commonly referred to as texture bias. While most of the previous works in the literature focus on the task of image classification, we go beyond this and study the texture bias of CNNs in semantic segmentation. In this work, we propose to train CNNs on pre-processed images with less texture to reduce the texture bias. Therein, the challenge is to suppress image texture while preserving shape information. To this end, we utilize edge enhancing diffusion (EED), an anisotropic image diffusion method initially introduced for image compression, to create texture reduced duplicates of existing datasets. Extensive numerical studies are performed with both CNNs and vision transformer models trained on original data and EED-processed data from the Cityscapes dataset and the CARLA driving simulator. We observe strong texture-dependence of CNNs and moderate texture-dependence of transformers. Training CNNs on EED-processed images enables the models to become completely ignorant with respect to texture, demonstrating resilience with respect to texture re-introduction to any degree. Additionally we analyze the performance reduction in depth on a level of connected components in the semantic segmentation and study the influence of EED pre-processing on domain generalization as well as adversarial robustness.
Abstract:State-of-the-art deep neural networks have been shown to be extremely powerful in a variety of perceptual tasks like semantic segmentation. However, these networks are vulnerable to adversarial perturbations of the input which are imperceptible for humans but lead to incorrect predictions. Treating image segmentation as a sum of pixel-wise classifications, adversarial attacks developed for classification models were shown to be applicable to segmentation models as well. In this work, we present simple uncertainty-based weighting schemes for the loss functions of such attacks that (i) put higher weights on pixel classifications which can more easily perturbed and (ii) zero-out the pixel-wise losses corresponding to those pixels that are already confidently misclassified. The weighting schemes can be easily integrated into the loss function of a range of well-known adversarial attackers with minimal additional computational overhead, but lead to significant improved perturbation performance, as we demonstrate in our empirical analysis on several datasets and models.
Abstract:State-of-the-art deep neural networks have proven to be highly powerful in a broad range of tasks, including semantic image segmentation. However, these networks are vulnerable against adversarial attacks, i.e., non-perceptible perturbations added to the input image causing incorrect predictions, which is hazardous in safety-critical applications like automated driving. Adversarial examples and defense strategies are well studied for the image classification task, while there has been limited research in the context of semantic segmentation. First works however show that the segmentation outcome can be severely distorted by adversarial attacks. In this work, we introduce an uncertainty-based method for the detection of adversarial attacks in semantic segmentation. We observe that uncertainty as for example captured by the entropy of the output distribution behaves differently on clean and perturbed images using this property to distinguish between the two cases. Our method works in a light-weight and post-processing manner, i.e., we do not modify the model or need knowledge of the process used for generating adversarial examples. In a thorough empirical analysis, we demonstrate the ability of our approach to detect perturbed images across multiple types of adversarial attacks.
Abstract:In recent years, deep neural networks have defined the state-of-the-art in semantic segmentation where their predictions are constrained to a predefined set of semantic classes. They are to be deployed in applications such as automated driving, although their categorically confined expressive power runs contrary to such open world scenarios. Thus, the detection and segmentation of objects from outside their predefined semantic space, i.e., out-of-distribution (OoD) objects, is of highest interest. Since uncertainty estimation methods like softmax entropy or Bayesian models are sensitive to erroneous predictions, these methods are a natural baseline for OoD detection. Here, we present a method for obtaining uncertainty scores from pixel-wise loss gradients which can be computed efficiently during inference. Our approach is simple to implement for a large class of models, does not require any additional training or auxiliary data and can be readily used on pre-trained segmentation models. Our experiments show the ability of our method to identify wrong pixel classifications and to estimate prediction quality. In particular, we observe superior performance in terms of OoD segmentation to comparable baselines on the SegmentMeIfYouCan benchmark, clearly outperforming methods which are similarly flexible to implement.
Abstract:In this work we present two video test data sets for the novel computer vision (CV) task of out of distribution tracking (OOD tracking). Here, OOD objects are understood as objects with a semantic class outside the semantic space of an underlying image segmentation algorithm, or an instance within the semantic space which however looks decisively different from the instances contained in the training data. OOD objects occurring on video sequences should be detected on single frames as early as possible and tracked over their time of appearance as long as possible. During the time of appearance, they should be segmented as precisely as possible. We present the SOS data set containing 20 video sequences of street scenes and more than 1000 labeled frames with up to two OOD objects. We furthermore publish the synthetic CARLA-WildLife data set that consists of 26 video sequences containing up to four OOD objects on a single frame. We propose metrics to measure the success of OOD tracking and develop a baseline algorithm that efficiently tracks the OOD objects. As an application that benefits from OOD tracking, we retrieve OOD sequences from unlabeled videos of street scenes containing OOD objects.
Abstract:State-of-the-art deep neural networks demonstrate outstanding performance in semantic segmentation. However, their performance is tied to the domain represented by the training data. Open world scenarios cause inaccurate predictions which is hazardous in safety relevant applications like automated driving. In this work, we enhance semantic segmentation predictions using monocular depth estimation to improve segmentation by reducing the occurrence of non-detected objects in presence of domain shift. To this end, we infer a depth heatmap via a modified segmentation network which generates foreground-background masks, operating in parallel to a given semantic segmentation network. Both segmentation masks are aggregated with a focus on foreground classes (here road users) to reduce false negatives. To also reduce the occurrence of false positives, we apply a pruning based on uncertainty estimates. Our approach is modular in a sense that it post-processes the output of any semantic segmentation network. In our experiments, we observe less non-detected objects of most important classes and an enhanced generalization to other domains compared to the basic semantic segmentation prediction.
Abstract:Instance segmentation of images is an important tool for automated scene understanding. Neural networks are usually trained to optimize their overall performance in terms of accuracy. Meanwhile, in applications such as automated driving, an overlooked pedestrian seems more harmful than a falsely detected one. In this work, we present a false negative detection method for image sequences based on inconsistencies in time series of tracked instances given the availability of image sequences in online applications. As the number of instances can be greatly increased by this algorithm, we apply a false positive pruning using uncertainty estimates aggregated over instances. To this end, instance-wise metrics are constructed which characterize uncertainty and geometry of a given instance or are predicated on depth estimation. The proposed method serves as a post-processing step applicable to any neural network that can also be trained on single frames only. In our tests, we obtain an improved trade-off between false negative and false positive instances by our fused detection approach in comparison to the use of an ordinary score value provided by the instance segmentation network during inference.
Abstract:Instance segmentation with neural networks is an essential task in environment perception. However, the networks can predict false positive instances with high confidence values and true positives with low ones. Hence, it is important to accurately model the uncertainties of neural networks to prevent safety issues and foster interpretability. In applications such as automated driving the detection of road users like vehicles and pedestrians is of highest interest. We present a temporal approach to detect false positives and investigate uncertainties of instance segmentation networks. Since image sequences are available for online applications, we track instances over multiple frames and create temporal instance-wise aggregated metrics of uncertainty. The prediction quality is estimated by predicting the intersection over union as performance measure. Furthermore, we show how to use uncertainty information to replace the traditional score value from object detection and improve the overall performance of instance segmentation networks.