Abstract:Designing deep networks robust to adversarial examples remains an open problem. Likewise, recent zeroth order hard-label attacks on image classification models have shown comparable performance to their first-order, gradient-level alternatives. It was recently shown in the gradient-level setting that regular adversarial examples leave the data manifold, while their on-manifold counterparts are in fact generalization errors. In this paper, we argue that query efficiency in the zeroth-order setting is connected to an adversary's traversal through the data manifold. To explain this behavior, we propose an information-theoretic argument based on a noisy manifold distance oracle, which leaks manifold information through the adversary's gradient estimate. Through numerical experiments of manifold-gradient mutual information, we show this behavior acts as a function of the effective problem dimensionality and number of training points. On real-world datasets and multiple zeroth-order attacks using dimension-reduction, we observe the same universal behavior to produce samples closer to the data manifold. This results in up to two-fold decrease in the manifold distance measure, regardless of the model robustness. Our results suggest that taking the manifold-gradient mutual information into account can thus inform better robust model design in the future, and avoid leakage of the sensitive data manifold.
Abstract:Voice Processing Systems (VPSes), now widely deployed, have been made significantly more accurate through the application of recent advances in machine learning. However, adversarial machine learning has similarly advanced and has been used to demonstrate that VPSes are vulnerable to the injection of hidden commands - audio obscured by noise that is correctly recognized by a VPS but not by human beings. Such attacks, though, are often highly dependent on white-box knowledge of a specific machine learning model and limited to specific microphones and speakers, making their use across different acoustic hardware platforms (and thus their practicality) limited. In this paper, we break these dependencies and make hidden command attacks more practical through model-agnostic (blackbox) attacks, which exploit knowledge of the signal processing algorithms commonly used by VPSes to generate the data fed into machine learning systems. Specifically, we exploit the fact that multiple source audio samples have similar feature vectors when transformed by acoustic feature extraction algorithms (e.g., FFTs). We develop four classes of perturbations that create unintelligible audio and test them against 12 machine learning models, including 7 proprietary models (e.g., Google Speech API, Bing Speech API, IBM Speech API, Azure Speaker API, etc), and demonstrate successful attacks against all targets. Moreover, we successfully use our maliciously generated audio samples in multiple hardware configurations, demonstrating effectiveness across both models and real systems. In so doing, we demonstrate that domain-specific knowledge of audio signal processing represents a practical means of generating successful hidden voice command attacks.
Abstract:Establishing unique identities for both humans and end systems has been an active research problem in the security community, giving rise to innovative machine learning-based authentication techniques. Although such techniques offer an automated method to establish identity, they have not been vetted against sophisticated attacks that target their core machine learning technique. This paper demonstrates that mimicking the unique signatures generated by host fingerprinting and biometric authentication systems is possible. We expose the ineffectiveness of underlying machine learning classification models by constructing a blind attack based around the query synthesis framework and utilizing Explainable-AI (XAI) techniques. We launch an attack in under 130 queries on a state-of-the-art face authentication system, and under 100 queries on a host authentication system. We examine how these attacks can be defended against and explore their limitations. XAI provides an effective means for adversaries to infer decision boundaries and provides a new way forward in constructing attacks against systems using machine learning models for authentication.