Abstract:Successful conversations often rest on common understanding, where all parties are on the same page about the information being shared. This process, known as conversational grounding, is crucial for building trustworthy dialog systems that can accurately keep track of and recall the shared information. The proficiencies of an agent in grounding the conveyed information significantly contribute to building a reliable dialog system. Despite recent advancements in dialog systems, there exists a noticeable deficit in their grounding capabilities. Traum provided a framework for conversational grounding introducing Grounding Acts and Grounding Units, but substantial progress, especially in the realm of Large Language Models, remains lacking. To bridge this gap, we present the annotation of two dialog corpora employing Grounding Acts, Grounding Units, and a measure of their degree of grounding. We discuss our key findings during the annotation and also provide a baseline model to test the performance of current Language Models in categorizing the grounding acts of the dialogs. Our work aims to provide a useful resource for further research in making conversations with machines better understood and more reliable in natural day-to-day collaborative dialogs.
Abstract:This paper explores the application of machine learning techniques to predict where hedging occurs in peer-tutoring interactions. The study uses a naturalistic face-to-face dataset annotated for natural language turns, conversational strategies, tutoring strategies, and nonverbal behaviours. These elements are processed into a vector representation of the previous turns, which serves as input to several machine learning models. Results show that embedding layers, that capture the semantic information of the previous turns, significantly improves the model's performance. Additionally, the study provides insights into the importance of various features, such as interpersonal rapport and nonverbal behaviours, in predicting hedges by using Shapley values for feature explanation. We discover that the eye gaze of both the tutor and the tutee has a significant impact on hedge prediction. We further validate this observation through a follow-up ablation study.
Abstract:Hedging is a strategy for softening the impact of a statement in conversation. In reducing the strength of an expression, it may help to avoid embarrassment (more technically, ``face threat'') to one's listener. For this reason, it is often found in contexts of instruction, such as tutoring. In this work, we develop a model of hedge generation based on i) fine-tuning state-of-the-art language models trained on human-human tutoring data, followed by ii) reranking to select the candidate that best matches the expected hedging strategy within a candidate pool using a hedge classifier. We apply this method to a natural peer-tutoring corpus containing a significant number of disfluencies, repetitions, and repairs. The results show that generation in this noisy environment is feasible with reranking. By conducting an error analysis for both approaches, we reveal the challenges faced by systems attempting to accomplish both social and task-oriented goals in conversation.
Abstract:Hedges play an important role in the management of conversational interaction. In peer tutoring, they are notably used by tutors in dyads (pairs of interlocutors) experiencing low rapport to tone down the impact of instructions and negative feedback. Pursuing the objective of building a tutoring agent that manages rapport with students in order to improve learning, we used a multimodal peer-tutoring dataset to construct a computational framework for identifying hedges. We compared approaches relying on pre-trained resources with others that integrate insights from the social science literature. Our best performance involved a hybrid approach that outperforms the existing baseline while being easier to interpret. We employ a model explainability tool to explore the features that characterize hedges in peer-tutoring conversations, and we identify some novel features, and the benefits of such a hybrid model approach.
Abstract:Curiosity is a vital metacognitive skill in educational contexts, leading to creativity, and a love of learning. And while many school systems increasingly undercut curiosity by teaching to the test, teachers are increasingly interested in how to evoke curiosity in their students to prepare them for a world in which lifelong learning and reskilling will be more and more important. One aspect of curiosity that has received little attention, however, is the role of peers in eliciting curiosity. We present what we believe to be the first theoretical framework that articulates an integrated socio-cognitive account of curiosity that ties observable behaviors in peers to underlying curiosity states. We make a bipartite distinction between individual and interpersonal functions that contribute to curiosity, and multimodal behaviors that fulfill these functions. We validate the proposed framework by leveraging a longitudinal latent variable modeling approach. Findings confirm a positive predictive relationship between the latent variables of individual and interpersonal functions and curiosity, with the interpersonal functions exercising a comparatively stronger influence. Prominent behavioral realizations of these functions are also discovered in a data-driven manner. We instantiate the proposed theoretical framework in a set of strategies and tactics that can be incorporated into learning technologies to indicate, evoke, and scaffold curiosity. This work is a step towards designing learning technologies that can recognize and evoke moment-by-moment curiosity during learning in social contexts and towards a more complete multimodal learning analytics. The underlying rationale is applicable more generally for developing computer support for other metacognitive and socio-emotional skills.
Abstract:Some exciting new approaches to neural architectures for the analysis of conversation have been introduced over the past couple of years. These include neural architectures for detecting emotion, dialogue acts, and sentiment polarity. They take advantage of some of the key attributes of contemporary machine learning, such as recurrent neural networks with attention mechanisms and transformer-based approaches. However, while the architectures themselves are extremely promising, the phenomena they have been applied to to date are but a small part of what makes conversation engaging. In this paper we survey these neural architectures and what they have been applied to. On the basis of the social science literature, we then describe what we believe to be the most fundamental and definitional feature of conversation, which is its co-construction over time by two or more interlocutors. We discuss how neural architectures of the sort surveyed could profitably be applied to these more fundamental aspects of conversation, and what this buys us in terms of a better analysis of conversation and even, in the longer term, a better way of generating conversation for a conversational system.
Abstract:Social norms are shared rules that govern and facilitate social interaction. Violating such social norms via teasing and insults may serve to upend power imbalances or, on the contrary reinforce solidarity and rapport in conversation, rapport which is highly situated and context-dependent. In this work, we investigate the task of automatically identifying the phenomena of social norm violation in discourse. Towards this goal, we leverage the power of recurrent neural networks and multimodal information present in the interaction, and propose a predictive model to recognize social norm violation. Using long-term temporal and contextual information, our model achieves an F1 score of 0.705. Implications of our work regarding developing a social-aware agent are discussed.