Abstract:Recent advancements in supervised automatic speech recognition (ASR) have achieved remarkable performance, largely due to the growing availability of large transcribed speech corpora. However, most languages lack sufficient paired speech and text data to effectively train these systems. In this article, we tackle the challenge of developing ASR systems without paired speech and text corpora by proposing the removal of reliance on a phoneme lexicon. We explore a new research direction: word-level unsupervised ASR. Using a curated speech corpus containing only high-frequency English words, our system achieves a word error rate of nearly 20% without parallel transcripts or oracle word boundaries. Furthermore, we experimentally demonstrate that an unsupervised speech recognizer can emerge from joint speech-to-speech and text-to-text masked token-infilling. This innovative model surpasses the performance of previous unsupervised ASR models trained with direct distribution matching.
Abstract:Self-supervised learning in speech involves training a speech representation network on a large-scale unannotated speech corpus, and then applying the learned representations to downstream tasks. Since the majority of the downstream tasks of SSL learning in speech largely focus on the content information in speech, the most desirable speech representations should be able to disentangle unwanted variations, such as speaker variations, from the content. However, disentangling speakers is very challenging, because removing the speaker information could easily result in a loss of content as well, and the damage of the latter usually far outweighs the benefit of the former. In this paper, we propose a new SSL method that can achieve speaker disentanglement without severe loss of content. Our approach is adapted from the HuBERT framework, and incorporates disentangling mechanisms to regularize both the teacher labels and the learned representations. We evaluate the benefit of speaker disentanglement on a set of content-related downstream tasks, and observe a consistent and notable performance advantage of our speaker-disentangled representations.
Abstract:Large-scale auto-regressive language models pretrained on massive text have demonstrated their impressive ability to perform new natural language tasks with only a few text examples, without the need for fine-tuning. Recent studies further show that such a few-shot learning ability can be extended to the text-image setting by training an encoder to encode the images into embeddings functioning like the text embeddings of the language model. Interested in exploring the possibility of transferring the few-shot learning ability to the audio-text setting, we propose a novel speech understanding framework, WavPrompt, where we finetune a wav2vec model to generate a sequence of audio embeddings understood by the language model. We show that WavPrompt is a few-shot learner that can perform speech understanding tasks better than a naive text baseline. We conduct detailed ablation studies on different components and hyperparameters to empirically identify the best model configuration. In addition, we conduct a non-speech understanding experiment to show WavPrompt can extract more information than just the transcriptions. Code is available at https://github.com/Hertin/WavPrompt
Abstract:An unsupervised text-to-speech synthesis (TTS) system learns to generate the speech waveform corresponding to any written sentence in a language by observing: 1) a collection of untranscribed speech waveforms in that language; 2) a collection of texts written in that language without access to any transcribed speech. Developing such a system can significantly improve the availability of speech technology to languages without a large amount of parallel speech and text data. This paper proposes an unsupervised TTS system by leveraging recent advances in unsupervised automatic speech recognition (ASR). Our unsupervised system can achieve comparable performance to the supervised system in seven languages with about 10-20 hours of speech each. A careful study on the effect of text units and vocoders has also been conducted to better understand what factors may affect unsupervised TTS performance. The samples generated by our models can be found at https://cactuswiththoughts.github.io/UnsupTTS-Demo.