Abstract:Reinforcement learning utilizing kernel ridge regression to predict the expected value function represents a powerful method with great representational capacity. This setting is a highly versatile framework amenable to analytical results. We consider kernel-based function approximation for RL in the infinite horizon average reward setting, also referred to as the undiscounted setting. We propose an optimistic algorithm, similar to acquisition function based algorithms in the special case of bandits. We establish novel no-regret performance guarantees for our algorithm, under kernel-based modelling assumptions. Additionally, we derive a novel confidence interval for the kernel-based prediction of the expected value function, applicable across various RL problems.
Abstract:In this research note, we revisit the bandits with expert advice problem. Under a restricted feedback model, we prove a lower bound of order $\sqrt{K T \ln(N/K)}$ for the worst-case regret, where $K$ is the number of actions, $N>K$ the number of experts, and $T$ the time horizon. This matches a previously known upper bound of the same order and improves upon the best available lower bound of $\sqrt{K T (\ln N) / (\ln K)}$. For the standard feedback model, we prove a new instance-based upper bound that depends on the agreement between the experts and provides a logarithmic improvement compared to prior results.
Abstract:We study a generalization of the problem of online learning in adversarial linear contextual bandits by incorporating loss functions that belong to a reproducing kernel Hilbert space, which allows for a more flexible modeling of complex decision-making scenarios. We propose a computationally efficient algorithm that makes use of a new optimistically biased estimator for the loss functions and achieves near-optimal regret guarantees under a variety of eigenvalue decay assumptions made on the underlying kernel. Specifically, under the assumption of polynomial eigendecay with exponent $c>1$, the regret is $\widetilde{O}(KT^{\frac{1}{2}(1+\frac{1}{c})})$, where $T$ denotes the number of rounds and $K$ the number of actions. Furthermore, when the eigendecay follows an exponential pattern, we achieve an even tighter regret bound of $\widetilde{O}(\sqrt{T})$. These rates match the lower bounds in all special cases where lower bounds are known at all, and match the best known upper bounds available for the more well-studied stochastic counterpart of our problem.
Abstract:Reinforcement learning (RL) has shown empirical success in various real world settings with complex models and large state-action spaces. The existing analytical results, however, typically focus on settings with a small number of state-actions or simple models such as linearly modeled state-action value functions. To derive RL policies that efficiently handle large state-action spaces with more general value functions, some recent works have considered nonlinear function approximation using kernel ridge regression. We propose $\pi$-KRVI, an optimistic modification of least-squares value iteration, when the state-action value function is represented by an RKHS. We prove the first order-optimal regret guarantees under a general setting. Our results show a significant polynomial in the number of episodes improvement over the state of the art. In particular, with highly non-smooth kernels (such as Neural Tangent kernel or some Mat\'ern kernels) the existing results lead to trivial (superlinear in the number of episodes) regret bounds. We show a sublinear regret bound that is order optimal in the case of Mat\'ern kernels where a lower bound on regret is known.
Abstract:We consider the adversarial linear contextual bandit setting, which allows for the loss functions associated with each of $K$ arms to change over time without restriction. Assuming the $d$-dimensional contexts are drawn from a fixed known distribution, the worst-case expected regret over the course of $T$ rounds is known to scale as $\tilde O(\sqrt{Kd T})$. Under the additional assumption that the density of the contexts is log-concave, we obtain a second-order bound of order $\tilde O(K\sqrt{d V_T})$ in terms of the cumulative second moment of the learner's losses $V_T$, and a closely related first-order bound of order $\tilde O(K\sqrt{d L_T^*})$ in terms of the cumulative loss of the best policy $L_T^*$. Since $V_T$ or $L_T^*$ may be significantly smaller than $T$, these improve over the worst-case regret whenever the environment is relatively benign. Our results are obtained using a truncated version of the continuous exponential weights algorithm over the probability simplex, which we analyse by exploiting a novel connection to the linear bandit setting without contexts.
Abstract:We study the Bayesian regret of the renowned Thompson Sampling algorithm in contextual bandits with binary losses and adversarially-selected contexts. We adapt the information-theoretic perspective of Russo and Van Roy [2016] to the contextual setting by introducing a new concept of information ratio based on the mutual information between the unknown model parameter and the observed loss. This allows us to bound the regret in terms of the entropy of the prior distribution through a remarkably simple proof, and with no structural assumptions on the likelihood or the prior. The extension to priors with infinite entropy only requires a Lipschitz assumption on the log-likelihood. An interesting special case is that of logistic bandits with d-dimensional parameters, K actions, and Lipschitz logits, for which we provide a $\widetilde{O}(\sqrt{dKT})$ regret upper-bound that does not depend on the smallest slope of the sigmoid link function.
Abstract:We study a family online influence maximization problems where in a sequence of rounds $t=1,\ldots,T$, a decision maker selects one from a large number of agents with the goal of maximizing influence. Upon choosing an agent, the decision maker shares a piece of information with the agent, which information then spreads in an unobserved network over which the agents communicate. The goal of the decision maker is to select the sequence of agents in a way that the total number of influenced nodes in the network. In this work, we consider a scenario where the networks are generated independently for each $t$ according to some fixed but unknown distribution, so that the set of influenced nodes corresponds to the connected component of the random graph containing the vertex corresponding to the selected agent. Furthermore, we assume that the decision maker only has access to limited feedback: instead of making the unrealistic assumption that the entire network is observable, we suppose that the available feedback is generated based on a small neighborhood of the selected vertex. Our results show that such partial local observations can be sufficient for maximizing global influence. We model the underlying random graph as a sparse inhomogeneous Erd\H{o}s--R\'enyi graph, and study three specific families of random graph models in detail: stochastic block models, Chung--Lu models and Kronecker random graphs. We show that in these cases one may learn to maximize influence by merely observing the degree of the selected vertex in the generated random graph. We propose sequential learning algorithms that aim at maximizing influence, and provide their theoretical analysis in both the subcritical and supercritical regimes of all considered models.
Abstract:We consider an online learning problem where the learner interacts with a Markov decision process in a sequence of episodes, where the reward function is allowed to change between episodes in an adversarial manner and the learner only gets to observe the rewards associated with its actions. We allow the state space to be arbitrarily large, but we assume that all action-value functions can be represented as linear functions in terms of a known low-dimensional feature map, and that the learner has access to a simulator of the environment that allows generating trajectories from the true MDP dynamics. Our main contribution is developing a computationally efficient algorithm that we call MDP-LinExp3, and prove that its regret is bounded by $\widetilde{\mathcal{O}}\big(H^2 T^{2/3} (dK)^{1/3}\big)$, where $T$ is the number of episodes, $H$ is the number of steps in each episode, $K$ is the number of actions, and $d$ is the dimension of the feature map. We also show that the regret can be improved to $\widetilde{\mathcal{O}}\big(H^2 \sqrt{TdK}\big)$ under much stronger assumptions on the MDP dynamics. To our knowledge, MDP-LinExp3 is the first provably efficient algorithm for this problem setting.
Abstract:We consider an adversarial variant of the classic $K$-armed linear contextual bandit problem where the sequence of loss functions associated with each arm are allowed to change without restriction over time. Under the assumption that the $d$-dimensional contexts are generated i.i.d.~at random from a known distributions, we develop computationally efficient algorithms based on the classic Exp3 algorithm. Our first algorithm, RealLinExp3, is shown to achieve a regret guarantee of $\widetilde{O}(\sqrt{KdT})$ over $T$ rounds, which matches the best available bound for this problem. Our second algorithm, RobustLinExp3, is shown to be robust to misspecification, in that it achieves a regret bound of $\widetilde{O}((Kd)^{1/3}T^{2/3}) + \varepsilon \sqrt{d} T$ if the true reward function is linear up to an additive nonlinear error uniformly bounded in absolute value by $\varepsilon$. To our knowledge, our performance guarantees constitute the very first results on this problem setting.
Abstract:We consider an online influence maximization problem in which a decision maker selects a node among a large number of possibilities and places a piece of information at the node. The node transmits the information to some others that are in the same connected component in a random graph. The goal of the decision maker is to reach as many nodes as possible, with the added complication that feedback is only available about the degree of the selected node. Our main result shows that such local observations can be sufficient for maximizing global influence in two broadly studied families of random graph models: stochastic block models and Chung--Lu models. With this insight, we propose a bandit algorithm that aims at maximizing local (and thus global) influence, and provide its theoretical analysis in both the subcritical and supercritical regimes of both considered models. Notably, our performance guarantees show no explicit dependence on the total number of nodes in the network, making our approach well-suited for large-scale applications.