Abstract:In this research note, we revisit the bandits with expert advice problem. Under a restricted feedback model, we prove a lower bound of order $\sqrt{K T \ln(N/K)}$ for the worst-case regret, where $K$ is the number of actions, $N>K$ the number of experts, and $T$ the time horizon. This matches a previously known upper bound of the same order and improves upon the best available lower bound of $\sqrt{K T (\ln N) / (\ln K)}$. For the standard feedback model, we prove a new instance-based upper bound that depends on the agreement between the experts and provides a logarithmic improvement compared to prior results.
Abstract:This work addresses the mediator feedback problem, a bandit game where the decision set consists of a number of policies, each associated with a probability distribution over a common space of outcomes. Upon choosing a policy, the learner observes an outcome sampled from its distribution and incurs the loss assigned to this outcome in the present round. We introduce the policy set capacity as an information-theoretic measure for the complexity of the policy set. Adopting the classical EXP4 algorithm, we provide new regret bounds depending on the policy set capacity in both the adversarial and the stochastic settings. For a selection of policy set families, we prove nearly-matching lower bounds, scaling similarly with the capacity. We also consider the case when the policies' distributions can vary between rounds, thus addressing the related bandits with expert advice problem, which we improve upon its prior results. Additionally, we prove a lower bound showing that exploiting the similarity between the policies is not possible in general under linear bandit feedback. Finally, for a full-information variant, we provide a regret bound scaling with the information radius of the policy set.
Abstract:In this paper, we provide novel tail bounds on the optimization error of Stochastic Mirror Descent for convex and Lipschitz objectives. Our analysis extends the existing tail bounds from the classical light-tailed Sub-Gaussian noise case to heavier-tailed noise regimes. We study the optimization error of the last iterate as well as the average of the iterates. We instantiate our results in two important cases: a class of noise with exponential tails and one with polynomial tails. A remarkable feature of our results is that they do not require an upper bound on the diameter of the domain. Finally, we support our theory with illustrative experiments that compare the behavior of the average of the iterates with that of the last iterate in heavy-tailed noise regimes.
Abstract:In this work, we improve on the upper and lower bounds for the regret of online learning with strongly observable undirected feedback graphs. The best known upper bound for this problem is $\mathcal{O}\bigl(\sqrt{\alpha T\ln K}\bigr)$, where $K$ is the number of actions, $\alpha$ is the independence number of the graph, and $T$ is the time horizon. The $\sqrt{\ln K}$ factor is known to be necessary when $\alpha = 1$ (the experts case). On the other hand, when $\alpha = K$ (the bandits case), the minimax rate is known to be $\Theta\bigl(\sqrt{KT}\bigr)$, and a lower bound $\Omega\bigl(\sqrt{\alpha T}\bigr)$ is known to hold for any $\alpha$. Our improved upper bound $\mathcal{O}\bigl(\sqrt{\alpha T(1+\ln(K/\alpha))}\bigr)$ holds for any $\alpha$ and matches the lower bounds for bandits and experts, while interpolating intermediate cases. To prove this result, we use FTRL with $q$-Tsallis entropy for a carefully chosen value of $q \in [1/2, 1)$ that varies with $\alpha$. The analysis of this algorithm requires a new bound on the variance term in the regret. We also show how to extend our techniques to time-varying graphs, without requiring prior knowledge of their independence numbers. Our upper bound is complemented by an improved $\Omega\bigl(\sqrt{\alpha T(\ln K)/(\ln\alpha)}\bigr)$ lower bound for all $\alpha > 1$, whose analysis relies on a novel reduction to multitask learning. This shows that a logarithmic factor is necessary as soon as $\alpha < K$.
Abstract:We investigate the problem of bandits with expert advice when the experts are fixed and known distributions over the actions. Improving on previous analyses, we show that the regret in this setting is controlled by information-theoretic quantities that measure the similarity between experts. In some natural special cases, this allows us to obtain the first regret bound for EXP4 that can get arbitrarily close to zero if the experts are similar enough. While for a different algorithm, we provide another bound that describes the similarity between the experts in terms of the KL-divergence, and we show that this bound can be smaller than the one of EXP4 in some cases. Additionally, we provide lower bounds for certain classes of experts showing that the algorithms we analyzed are nearly optimal in some cases.