Abstract:Next-generation reservoir computing (NG-RC) has attracted much attention due to its excellent performance in spatio-temporal forecasting of complex systems and its ease of implementation. This paper shows that NG-RC can be encoded as a kernel ridge regression that makes training efficient and feasible even when the space of chosen polynomial features is very large. Additionally, an extension to an infinite number of covariates is possible, which makes the methodology agnostic with respect to the lags into the past that are considered as explanatory factors, as well as with respect to the number of polynomial covariates, an important hyperparameter in traditional NG-RC. We show that this approach has solid theoretical backing and good behavior based on kernel universality properties previously established in the literature. Various numerical illustrations show that these generalizations of NG-RC outperform the traditional approach in several forecasting applications.
Abstract:Several topological and analytical notions of continuity and fading memory for causal and time-invariant filters are introduced, and the relations between them are analysed. A significant generalization of the convolution theorem that establishes the equivalence between the fading memory property and the availability of convolution representations of linear filters is proved. This result extends a previous such characterization to a complete array of weighted norms in the definition of the fading memory property. Additionally, the main theorem shows that the availability of convolution representations can be characterized, at least when the codomain is finite-dimensional, not only by the fading memory property but also by the reunion of two purely topological notions that are called minimal continuity and minimal fading memory property. Finally, when the input space and the codomain of a linear functional are Hilbert spaces, it is shown that minimal continuity and the minimal fading memory property guarantee the existence of interesting embeddings of the associated reproducing kernel Hilbert spaces and approximation results of solutions of kernel regressions in the presence of finite data sets.
Abstract:A probabilistic framework to study the dependence structure induced by deterministic discrete-time state-space systems between input and output processes is introduced. General sufficient conditions are formulated under which output processes exist and are unique once an input process has been fixed, a property that in the deterministic state-space literature is known as the echo state property. When those conditions are satisfied, the given state-space system becomes a generative model for probabilistic dependences between two sequence spaces. Moreover, those conditions guarantee that the output depends continuously on the input when using the Wasserstein metric. The output processes whose existence is proved are shown to be causal in a specific sense and to generalize those studied in purely deterministic situations. The results in this paper constitute a significant stochastic generalization of sufficient conditions for the deterministic echo state property to hold, in the sense that the stochastic echo state property can be satisfied under contractivity conditions that are strictly weaker than those in deterministic situations. This means that state-space systems can induce a purely probabilistic dependence structure between input and output sequence spaces even when there is no functional relation between those two spaces.
Abstract:A structure-preserving kernel ridge regression method is presented that allows the recovery of potentially high-dimensional and nonlinear Hamiltonian functions out of datasets made of noisy observations of Hamiltonian vector fields. The method proposes a closed-form solution that yields excellent numerical performances that surpass other techniques proposed in the literature in this setup. From the methodological point of view, the paper extends kernel regression methods to problems in which loss functions involving linear functions of gradients are required and, in particular, a differential reproducing property and a Representer Theorem are proved in this context. The relation between the structure-preserving kernel estimator and the Gaussian posterior mean estimator is analyzed. A full error analysis is conducted that provides convergence rates using fixed and adaptive regularization parameters. The good performance of the proposed estimator is illustrated with various numerical experiments.
Abstract:This work aims to prove that the classical Gaussian kernel, when defined on a non-Euclidean symmetric space, is never positive-definite for any choice of parameter. To achieve this goal, the paper develops new geometric and analytical arguments. These provide a rigorous characterization of the positive-definiteness of the Gaussian kernel, which is complete but for a limited number of scenarios in low dimensions that are treated by numerical computations. Chief among these results are the L$^{\!\scriptscriptstyle p}$-$\hspace{0.02cm}$Godement theorems (where $p = 1,2$), which provide verifiable necessary and sufficient conditions for a kernel defined on a symmetric space of non-compact type to be positive-definite. A celebrated theorem, sometimes called the Bochner-Godement theorem, already gives such conditions and is far more general in its scope, but is especially hard to apply. Beyond the connection with the Gaussian kernel, the new results in this work lay out a blueprint for the study of invariant kernels on symmetric spaces, bringing forth specific harmonic analysis tools that suggest many future applications.
Abstract:Kernel methods are powerful tools in machine learning. Classical kernel methods are based on positive-definite kernels, which map data spaces into reproducing kernel Hilbert spaces (RKHS). For non-Euclidean data spaces, positive-definite kernels are difficult to come by. In this case, we propose the use of reproducing kernel Krein space (RKKS) based methods, which require only kernels that admit a positive decomposition. We show that one does not need to access this decomposition in order to learn in RKKS. We then investigate the conditions under which a kernel is positively decomposable. We show that invariant kernels admit a positive decomposition on homogeneous spaces under tractable regularity assumptions. This makes them much easier to construct than positive-definite kernels, providing a route for learning with kernels for non-Euclidean data. By the same token, this provides theoretical foundations for RKKS-based methods in general.
Abstract:Devising deep latent variable models for multi-modal data has been a long-standing theme in machine learning research. Multi-modal Variational Autoencoders (VAEs) have been a popular generative model class that learns latent representations which jointly explain multiple modalities. Various objective functions for such models have been suggested, often motivated as lower bounds on the multi-modal data log-likelihood or from information-theoretic considerations. In order to encode latent variables from different modality subsets, Product-of-Experts (PoE) or Mixture-of-Experts (MoE) aggregation schemes have been routinely used and shown to yield different trade-offs, for instance, regarding their generative quality or consistency across multiple modalities. In this work, we consider a variational bound that can tightly lower bound the data log-likelihood. We develop more flexible aggregation schemes that generalise PoE or MoE approaches by combining encoded features from different modalities based on permutation-invariant neural networks. Our numerical experiments illustrate trade-offs for multi-modal variational bounds and various aggregation schemes. We show that tighter variational bounds and more flexible aggregation models can become beneficial when one wants to approximate the true joint distribution over observed modalities and latent variables in identifiable models.
Abstract:Numerical evaluations of the memory capacity (MC) of recurrent neural networks reported in the literature often contradict well-established theoretical bounds. In this paper, we study the case of linear echo state networks, for which the total memory capacity has been proven to be equal to the rank of the corresponding Kalman controllability matrix. We shed light on various reasons for the inaccurate numerical estimations of the memory, and we show that these issues, often overlooked in the recent literature, are of an exclusively numerical nature. More explicitly, we prove that when the Krylov structure of the linear MC is ignored, a gap between the theoretical MC and its empirical counterpart is introduced. As a solution, we develop robust numerical approaches by exploiting a result of MC neutrality with respect to the input mask matrix. Simulations show that the memory curves that are recovered using the proposed methods fully agree with the theory.
Abstract:Reservoir computing approximation and generalization bounds are proved for a new concept class of input/output systems that extends the so-called generalized Barron functionals to a dynamic context. This new class is characterized by the readouts with a certain integral representation built on infinite-dimensional state-space systems. It is shown that this class is very rich and possesses useful features and universal approximation properties. The reservoir architectures used for the approximation and estimation of elements in the new class are randomly generated echo state networks with either linear or ReLU activation functions. Their readouts are built using randomly generated neural networks in which only the output layer is trained (extreme learning machines or random feature neural networks). The results in the paper yield a fully implementable recurrent neural network-based learning algorithm with provable convergence guarantees that do not suffer from the curse of dimensionality.
Abstract:On Euclidean spaces, the Gaussian kernel is one of the most widely used kernels in applications. It has also been used on non-Euclidean spaces, where it is known that there may be (and often are) scale parameters for which it is not positive definite. Hope remains that this kernel is positive definite for many choices of parameter. However, we show that the Gaussian kernel is not positive definite on the circle for any choice of parameter. This implies that on metric spaces in which the circle can be isometrically embedded, such as spheres, projective spaces and Grassmannians, the Gaussian kernel is not positive definite for any parameter.