Several topological and analytical notions of continuity and fading memory for causal and time-invariant filters are introduced, and the relations between them are analysed. A significant generalization of the convolution theorem that establishes the equivalence between the fading memory property and the availability of convolution representations of linear filters is proved. This result extends a previous such characterization to a complete array of weighted norms in the definition of the fading memory property. Additionally, the main theorem shows that the availability of convolution representations can be characterized, at least when the codomain is finite-dimensional, not only by the fading memory property but also by the reunion of two purely topological notions that are called minimal continuity and minimal fading memory property. Finally, when the input space and the codomain of a linear functional are Hilbert spaces, it is shown that minimal continuity and the minimal fading memory property guarantee the existence of interesting embeddings of the associated reproducing kernel Hilbert spaces and approximation results of solutions of kernel regressions in the presence of finite data sets.