Abstract:Large Language Models (LLMs) have become state-of-the-art in Machine Translation (MT), often trained on massive bilingual parallel corpora scraped from the web, that contain low-quality entries and redundant information, leading to significant computational challenges. Various data filtering methods exist to reduce dataset sizes, but their effectiveness largely varies based on specific language pairs and domains. This paper evaluates the impact of commonly used data filtering techniques, such as LASER, MUSE, and LaBSE, on English-Polish translation within the biomedical domain. By filtering the UFAL Medical Corpus, we created varying dataset sizes to fine-tune the mBART50 model, which was then evaluated using the SacreBLEU metric on the Khresmoi dataset, having the quality of translations assessed by bilingual speakers. Our results show that both LASER and MUSE can significantly reduce dataset sizes while maintaining or even enhancing performance. We recommend the use of LASER, as it consistently outperforms the other methods and provides the most fluent and natural-sounding translations.
Abstract:Datasets play a critical role in medical imaging research, yet issues such as label quality, shortcuts, and metadata are often overlooked. This lack of attention may harm the generalizability of algorithms and, consequently, negatively impact patient outcomes. While existing medical imaging literature reviews mostly focus on machine learning (ML) methods, with only a few focusing on datasets for specific applications, these reviews remain static -- they are published once and not updated thereafter. This fails to account for emerging evidence, such as biases, shortcuts, and additional annotations that other researchers may contribute after the dataset is published. We refer to these newly discovered findings of datasets as research artifacts. To address this gap, we propose a living review that continuously tracks public datasets and their associated research artifacts across multiple medical imaging applications. Our approach includes a framework for the living review to monitor data documentation artifacts, and an SQL database to visualize the citation relationships between research artifact and dataset. Lastly, we discuss key considerations for creating medical imaging datasets, review best practices for data annotation, discuss the significance of shortcuts and demographic diversity, and emphasize the importance of managing datasets throughout their entire lifecycle. Our demo is publicly available at http://130.226.140.142.