Abstract:Large Language Models (LLMs) have become state-of-the-art in Machine Translation (MT), often trained on massive bilingual parallel corpora scraped from the web, that contain low-quality entries and redundant information, leading to significant computational challenges. Various data filtering methods exist to reduce dataset sizes, but their effectiveness largely varies based on specific language pairs and domains. This paper evaluates the impact of commonly used data filtering techniques, such as LASER, MUSE, and LaBSE, on English-Polish translation within the biomedical domain. By filtering the UFAL Medical Corpus, we created varying dataset sizes to fine-tune the mBART50 model, which was then evaluated using the SacreBLEU metric on the Khresmoi dataset, having the quality of translations assessed by bilingual speakers. Our results show that both LASER and MUSE can significantly reduce dataset sizes while maintaining or even enhancing performance. We recommend the use of LASER, as it consistently outperforms the other methods and provides the most fluent and natural-sounding translations.
Abstract:Recent developments in Generative AI, Computer Vision, and Natural Language Processing have led to an increased integration of AI models into various products. This widespread adoption of AI requires significant efforts in deploying these models in production environments. When hosting machine learning models for real-time predictions, it is important to meet defined Service Level Objectives (SLOs), ensuring reliability, minimal downtime, and optimizing operational costs of the underlying infrastructure. Large machine learning models often demand GPU resources for efficient inference to meet SLOs. In the context of these trends, there is growing interest in hosting AI models in a serverless architecture while still providing GPU access for inference tasks. This survey aims to summarize and categorize the emerging challenges and optimization opportunities for large-scale deep learning serving systems. By providing a novel taxonomy and summarizing recent trends, we hope that this survey could shed light on new optimization perspectives and motivate novel works in large-scale deep learning serving systems.