Abstract:While Chain of Thought (CoT) prompting approaches have significantly consolidated the reasoning capabilities of large language models (LLMs), they still face limitations that require extensive human effort or have performance needs to be improved. Existing endeavors have focused on bridging these gaps; however, these approaches either hinge on external data and cannot completely eliminate manual effort, or they fall short in effectively directing LLMs to generate high-quality exemplary prompts. To address the said pitfalls, we propose a novel prompt approach for automatic reasoning named \textbf{LBS3}, inspired by curriculum learning which better reflects human learning habits. Specifically, LBS3 initially steers LLMs to recall easy-to-hard proxy queries that are pertinent to the target query. Following this, it invokes a progressive strategy that utilizes exemplary prompts stemmed from easy-proxy queries to direct LLMs in solving hard-proxy queries, enabling the high-quality of the proxy solutions. Finally, our extensive experiments in various reasoning-intensive tasks with varying open- and closed-source LLMs show that LBS3 achieves strongly competitive performance compared to the SOTA baselines.
Abstract:Federated Learning (FL) is a distributed machine learning scheme in which clients jointly participate in the collaborative training of a global model by sharing model information rather than their private datasets. In light of concerns associated with communication and privacy, one-shot FL with a single communication round has emerged as a de facto promising solution. However, existing one-shot FL methods either require public datasets, focus on model homogeneous settings, or distill limited knowledge from local models, making it difficult or even impractical to train a robust global model. To address these limitations, we propose a new data-free dual-generator adversarial distillation method (namely DFDG) for one-shot FL, which can explore a broader local models' training space via training dual generators. DFDG is executed in an adversarial manner and comprises two parts: dual-generator training and dual-model distillation. In dual-generator training, we delve into each generator concerning fidelity, transferability and diversity to ensure its utility, and additionally tailor the cross-divergence loss to lessen the overlap of dual generators' output spaces. In dual-model distillation, the trained dual generators work together to provide the training data for updates of the global model. At last, our extensive experiments on various image classification tasks show that DFDG achieves significant performance gains in accuracy compared to SOTA baselines.
Abstract:Lexical Simplification (LS) aims to simplify text at the lexical level. Existing methods rely heavily on annotated data, making it challenging to apply in low-resource scenarios. In this paper, we propose a novel LS method without parallel corpora. This method employs an Adversarial Editing System with guidance from a confusion loss and an invariance loss to predict lexical edits in the original sentences. Meanwhile, we introduce an innovative LLM-enhanced loss to enable the distillation of knowledge from Large Language Models (LLMs) into a small-size LS system. From that, complex words within sentences are masked and a Difficulty-aware Filling module is crafted to replace masked positions with simpler words. At last, extensive experimental results and analyses on three benchmark LS datasets demonstrate the effectiveness of our proposed method.