Abstract:The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Few-shot RAW Image Denoising track on MIPI 2024. In total, 165 participants were successfully registered, and 7 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art erformance on Few-shot RAW Image Denoising. More details of this challenge and the link to the dataset can be found at https://mipichallenge.org/MIPI2024.
Abstract:Blind face restoration is an important task in computer vision and has gained significant attention due to its wide-range applications. In this work, we delve into the potential of leveraging the pretrained Stable Diffusion for blind face restoration. We propose BFRffusion which is thoughtfully designed to effectively extract features from low-quality face images and could restore realistic and faithful facial details with the generative prior of the pretrained Stable Diffusion. In addition, we build a privacy-preserving face dataset called PFHQ with balanced attributes like race, gender, and age. This dataset can serve as a viable alternative for training blind face restoration methods, effectively addressing privacy and bias concerns usually associated with the real face datasets. Through an extensive series of experiments, we demonstrate that our BFRffusion achieves state-of-the-art performance on both synthetic and real-world public testing datasets for blind face restoration and our PFHQ dataset is an available resource for training blind face restoration networks. The codes, pretrained models, and dataset are released at https://github.com/chenxx89/BFRffusion.
Abstract:By hiding the front-facing camera below the display panel, Under-Display Camera (UDC) provides users with a full-screen experience. However, due to the characteristics of the display, images taken by UDC suffer from significant quality degradation. Methods have been proposed to tackle UDC image restoration and advances have been achieved. There are still no specialized methods and datasets for restoring UDC face images, which may be the most common problem in the UDC scene. To this end, considering color filtering, brightness attenuation, and diffraction in the imaging process of UDC, we propose a two-stage network UDC Degradation Model Network named UDC-DMNet to synthesize UDC images by modeling the processes of UDC imaging. Then we use UDC-DMNet and high-quality face images from FFHQ and CelebA-Test to create UDC face training datasets FFHQ-P/T and testing datasets CelebA-Test-P/T for UDC face restoration. We propose a novel dictionary-guided transformer network named DGFormer. Introducing the facial component dictionary and the characteristics of the UDC image in the restoration makes DGFormer capable of addressing blind face restoration in UDC scenarios. Experiments show that our DGFormer and UDC-DMNet achieve state-of-the-art performance.