Abstract:While it is expected to build robotic limbs with multiple degrees of freedom (DoF) inspired by nature, a single DoF design remains fundamental, providing benefits that include, but are not limited to, simplicity, robustness, cost-effectiveness, and efficiency. Mechanisms, especially those with multiple links and revolute joints connected in closed loops, play an enabling factor in introducing motion diversity for 1-DoF systems, which are usually constrained by self-collision during a full-cycle range of motion. This study presents a novel computational approach to designing one-degree-of-freedom (1-DoF) overconstrained robotic limbs for a desired spatial trajectory, while achieving energy-efficient, self-collision-free motion in full-cycle rotations. Firstly, we present the geometric optimization problem of linkage-based robotic limbs in a generalized formulation for self-collision-free design. Next, we formulate the spatial trajectory generation problem with the overconstrained linkages by optimizing the similarity and dynamic-related metrics. We further optimize the geometric shape of the overconstrained linkage to ensure smooth and collision-free motion driven by a single actuator. We validated our proposed method through various experiments, including personalized automata and bio-inspired hexapod robots. The resulting hexapod robot, featuring overconstrained robotic limbs, demonstrated outstanding energy efficiency during forward walking.
Abstract:Medical image segmentation is crucial for computer-aided diagnosis, yet privacy constraints hinder data sharing across institutions. Federated learning addresses this limitation, but existing approaches often rely on lightweight architectures that struggle with complex, heterogeneous data. Recently, the Segment Anything Model (SAM) has shown outstanding segmentation capabilities; however, its massive encoder poses significant challenges in federated settings. In this work, we present the first personalized federated SAM framework tailored for heterogeneous data scenarios in medical image segmentation. Our framework integrates two key innovations: (1) a personalized strategy that aggregates only the global parameters to capture cross-client commonalities while retaining the designed L-MoE (Localized Mixture-of-Experts) component to preserve domain-specific features; and (2) a decoupled global-local fine-tuning mechanism that leverages a teacher-student paradigm via knowledge distillation to bridge the gap between the global shared model and the personalized local models, thereby mitigating overgeneralization. Extensive experiments on two public datasets validate that our approach significantly improves segmentation performance, achieves robust cross-domain adaptation, and reduces communication overhead.
Abstract:While the animals' Fin-to-Limb evolution has been well-researched in biology, such morphological transformation remains under-adopted in the modern design of advanced robotic limbs. This paper investigates a novel class of overconstrained locomotion from a design and learning perspective inspired by evolutionary morphology, aiming to integrate the concept of `intelligent design under constraints' - hereafter referred to as constraint-driven design intelligence - in developing modern robotic limbs with superior energy efficiency. We propose a 3D-printable design of robotic limbs parametrically reconfigurable as a classical planar 4-bar linkage, an overconstrained Bennett linkage, and a spherical 4-bar linkage. These limbs adopt a co-axial actuation, identical to the modern legged robot platforms, with the added capability of upgrading into a wheel-legged system. Then, we implemented a large-scale, multi-terrain deep reinforcement learning framework to train these reconfigurable limbs for a comparative analysis of overconstrained locomotion in energy efficiency. Results show that the overconstrained limbs exhibit more efficient locomotion than planar limbs during forward and sideways walking over different terrains, including floors, slopes, and stairs, with or without random noises, by saving at least 22% mechanical energy in completing the traverse task, with the spherical limbs being the least efficient. It also achieves the highest average speed of 0.85 meters per second on flat terrain, which is 20% faster than the planar limbs. This study paves the path for an exciting direction for future research in overconstrained robotics leveraging evolutionary morphology and reconfigurable mechanism intelligence when combined with state-of-the-art methods in deep reinforcement learning.
Abstract:This paper studies the design, modeling, and control of a novel quadruped, featuring overconstrained robotic limbs employing the Bennett linkage for motion and power transmission. The modular limb design allows the robot to morph into reptile- or mammal-inspired forms. In contrast to the prevailing focus on planar limbs, this research delves into the classical overconstrained linkages, which have strong theoretical foundations in advanced kinematics but limited engineering applications. The study showcases the morphological superiority of overconstrained robotic limbs that can transform into planar or spherical limbs, exemplifying the Bennett linkage. By conducting kinematic and dynamic modeling, we apply model predictive control to simulate a range of locomotion tasks, revealing that overconstrained limbs outperform planar designs in omni-directional tasks like forward trotting, lateral trotting, and turning on the spot when considering foothold distances. These findings highlight the biological distinctions in limb design between reptiles and mammals and represent the first documented instance of overconstrained robotic limbs outperforming planar designs in dynamic locomotion.