Abstract:The demand for producing short-form videos for sharing on social media platforms has experienced significant growth in recent times. Despite notable advancements in the fields of video summarization and highlight detection, which can create partially usable short films from raw videos, these approaches are often domain-specific and require an in-depth understanding of real-world video content. To tackle this predicament, we propose Repurpose-10K, an extensive dataset comprising over 10,000 videos with more than 120,000 annotated clips aimed at resolving the video long-to-short task. Recognizing the inherent constraints posed by untrained human annotators, which can result in inaccurate annotations for repurposed videos, we propose a two-stage solution to obtain annotations from real-world user-generated content. Furthermore, we offer a baseline model to address this challenging task by integrating audio, visual, and caption aspects through a cross-modal fusion and alignment framework. We aspire for our work to ignite groundbreaking research in the lesser-explored realms of video repurposing. The code and data will be available at https://github.com/yongliang-wu/Repurpose.
Abstract:The Long-form Video Question-Answering task requires the comprehension and analysis of extended video content to respond accurately to questions by utilizing both temporal and contextual information. In this paper, we present MM-Screenplayer, an advanced video understanding system with multi-modal perception capabilities that can convert any video into textual screenplay representations. Unlike previous storytelling methods, we organize video content into scenes as the basic unit, rather than just visually continuous shots. Additionally, we developed a ``Look Back'' strategy to reassess and validate uncertain information, particularly targeting breakpoint mode. MM-Screenplayer achieved highest score in the CVPR'2024 LOng-form VidEo Understanding (LOVEU) Track 1 Challenge, with a global accuracy of 87.5% and a breakpoint accuracy of 68.8%.
Abstract:The proliferation of mobile devices and social media has revolutionized content dissemination, with short-form video becoming increasingly prevalent. This shift has introduced the challenge of video reframing to fit various screen aspect ratios, a process that highlights the most compelling parts of a video. Traditionally, video reframing is a manual, time-consuming task requiring professional expertise, which incurs high production costs. A potential solution is to adopt some machine learning models, such as video salient object detection, to automate the process. However, these methods often lack generalizability due to their reliance on specific training data. The advent of powerful large language models (LLMs) open new avenues for AI capabilities. Building on this, we introduce Reframe Any Video Agent (RAVA), a LLM-based agent that leverages visual foundation models and human instructions to restructure visual content for video reframing. RAVA operates in three stages: perception, where it interprets user instructions and video content; planning, where it determines aspect ratios and reframing strategies; and execution, where it invokes the editing tools to produce the final video. Our experiments validate the effectiveness of RAVA in video salient object detection and real-world reframing tasks, demonstrating its potential as a tool for AI-powered video editing.