Abstract:Generating human-like and adaptive trajectories is essential for autonomous driving in dynamic environments. While generative models have shown promise in synthesizing feasible trajectories, they often fail to capture the nuanced variability of human driving styles due to dataset biases and distributional shifts. To address this, we introduce TrajHF, a human feedback-driven finetuning framework for generative trajectory models, designed to align motion planning with diverse driving preferences. TrajHF incorporates multi-conditional denoiser and reinforcement learning with human feedback to refine multi-modal trajectory generation beyond conventional imitation learning. This enables better alignment with human driving preferences while maintaining safety and feasibility constraints. TrajHF achieves PDMS of 93.95 on NavSim benchmark, significantly exceeding other methods. TrajHF sets a new paradigm for personalized and adaptable trajectory generation in autonomous driving.
Abstract:In self-supervised monocular depth estimation tasks, discrete disparity prediction has been proven to attain higher quality depth maps than common continuous methods. However, current discretization strategies often divide depth ranges of scenes into bins in a handcrafted and rigid manner, limiting model performance. In this paper, we propose a learnable module, Adaptive Discrete Disparity Volume (ADDV), which is capable of dynamically sensing depth distributions in different RGB images and generating adaptive bins for them. Without any extra supervision, this module can be integrated into existing CNN architectures, allowing networks to produce representative values for bins and a probability volume over them. Furthermore, we introduce novel training strategies - uniformizing and sharpening - through a loss term and temperature parameter, respectively, to provide regularizations under self-supervised conditions, preventing model degradation or collapse. Empirical results demonstrate that ADDV effectively processes global information, generating appropriate bins for various scenes and producing higher quality depth maps compared to handcrafted methods.