Abstract:Plant disease recognition has witnessed a significant improvement with deep learning in recent years. Although plant disease datasets are essential and many relevant datasets are public available, two fundamental questions exist. First, how to differentiate datasets and further choose suitable public datasets for specific applications? Second, what kinds of characteristics of datasets are desired to achieve promising performance in real-world applications? To address the questions, this study explicitly propose an informative taxonomy to describe potential plant disease datasets. We further provide several directions for future, such as creating challenge-oriented datasets and the ultimate objective deploying deep learning in real-world applications with satisfactory performance. In addition, existing related public RGB image datasets are summarized. We believe that this study will contributing making better datasets and that this study will contribute beyond plant disease recognition such as plant species recognition. To facilitate the community, our project is public https://github.com/xml94/PPDRD with the information of relevant public datasets.
Abstract:Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25,256 MRI scans from 6,314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing.