Abstract:Interpretability techniques are valuable for helping humans understand and oversee AI systems. The SaTML 2024 CNN Interpretability Competition solicited novel methods for studying convolutional neural networks (CNNs) at the ImageNet scale. The objective of the competition was to help human crowd-workers identify trojans in CNNs. This report showcases the methods and results of four featured competition entries. It remains challenging to help humans reliably diagnose trojans via interpretability tools. However, the competition's entries have contributed new techniques and set a new record on the benchmark from Casper et al., 2023.
Abstract:We introduce Prototype Generation, a stricter and more robust form of feature visualisation for model-agnostic, data-independent interpretability of image classification models. We demonstrate its ability to generate inputs that result in natural activation paths, countering previous claims that feature visualisation algorithms are untrustworthy due to the unnatural internal activations. We substantiate these claims by quantitatively measuring similarity between the internal activations of our generated prototypes and natural images. We also demonstrate how the interpretation of generated prototypes yields important insights, highlighting spurious correlations and biases learned by models which quantitative methods over test-sets cannot identify.