Abstract:Interpretability techniques are valuable for helping humans understand and oversee AI systems. The SaTML 2024 CNN Interpretability Competition solicited novel methods for studying convolutional neural networks (CNNs) at the ImageNet scale. The objective of the competition was to help human crowd-workers identify trojans in CNNs. This report showcases the methods and results of four featured competition entries. It remains challenging to help humans reliably diagnose trojans via interpretability tools. However, the competition's entries have contributed new techniques and set a new record on the benchmark from Casper et al., 2023.
Abstract:Despite efforts to align large language models to produce harmless responses, they are still vulnerable to jailbreak prompts that elicit unrestricted behaviour. In this work, we investigate persona modulation as a black-box jailbreaking method to steer a target model to take on personalities that are willing to comply with harmful instructions. Rather than manually crafting prompts for each persona, we automate the generation of jailbreaks using a language model assistant. We demonstrate a range of harmful completions made possible by persona modulation, including detailed instructions for synthesising methamphetamine, building a bomb, and laundering money. These automated attacks achieve a harmful completion rate of 42.5% in GPT-4, which is 185 times larger than before modulation (0.23%). These prompts also transfer to Claude 2 and Vicuna with harmful completion rates of 61.0% and 35.9%, respectively. Our work reveals yet another vulnerability in commercial large language models and highlights the need for more comprehensive safeguards.
Abstract:We introduce Prototype Generation, a stricter and more robust form of feature visualisation for model-agnostic, data-independent interpretability of image classification models. We demonstrate its ability to generate inputs that result in natural activation paths, countering previous claims that feature visualisation algorithms are untrustworthy due to the unnatural internal activations. We substantiate these claims by quantitatively measuring similarity between the internal activations of our generated prototypes and natural images. We also demonstrate how the interpretation of generated prototypes yields important insights, highlighting spurious correlations and biases learned by models which quantitative methods over test-sets cannot identify.
Abstract:Over the past decade deep learning has revolutionized the field of computer vision, with convolutional neural network models proving to be very effective for image classification benchmarks. However, a fundamental theoretical questions remain answered: why can they solve discrete image classification tasks that involve feature extraction? We address this question in this paper by introducing a novel mathematical model for image classification, based on feature extraction, that can be used to generate images resembling real-world datasets. We show that convolutional neural network classifiers can solve these image classification tasks with zero error. In our proof, we construct piecewise linear functions that detect the presence of features, and show that they can be realized by a convolutional network.