Abstract:Over the past decade deep learning has revolutionized the field of computer vision, with convolutional neural network models proving to be very effective for image classification benchmarks. However, a fundamental theoretical questions remain answered: why can they solve discrete image classification tasks that involve feature extraction? We address this question in this paper by introducing a novel mathematical model for image classification, based on feature extraction, that can be used to generate images resembling real-world datasets. We show that convolutional neural network classifiers can solve these image classification tasks with zero error. In our proof, we construct piecewise linear functions that detect the presence of features, and show that they can be realized by a convolutional network.
Abstract:Recently, deep learning has revolutionized the field of natural language processing, with neural language models proving to be very effective for next-word prediction. However, a rigorous theoretical explanation for their success in the context of formal language theory has not yet been developed, as it is unclear why neural language models can learn the combinatorial rules that govern the next-word prediction task. In this paper, we study a class of formal languages that can be used to model real-world examples of English sentences. We construct neural language models can solve the next-word prediction task in this context with zero error. Our proof highlights the different roles of the embedding layer and the fully connected component within the neural language model.